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A B S T R A C T

As a tumor grows, it rapidly outstrips its blood supply, leaving portions of tumor that

undergo hypoxia. Hypoxia is strongly correlated with poor prognosis as it renders

tumors less responsive to chemotherapy and radiotherapy. During hypoxia, HIFs up-

regulate production of glycolysis enzymes and VEGF, thereby promoting metabolic

heterogeneity and angiogenesis, and proving to be directly instrumental in tumor

progression. Prolonged hypoxia leads to necrosis, which in turn activates inflamma-

tory responses that produce cytokines that stimulate tumor growth. Hypoxic tumor

cells interact with macrophages and fibroblasts, both involved with inflammatory

processes tied to tumor progression. So it is of clinical and theoretical significance to

understand: Under what conditions does hypoxia arise in a heterogeneous cell popu-

lation? Our aim is to transform this biological origins problem into a computational

inverse problem, and then attack it using approaches from computer science. First,

we develop a minimal, stochastic, spatiotemporal simulation of large heterogeneous

cell populations interacting in three dimensions. The simulation can manifest stable

localized regions of hypoxia. Second, we employ and develop a variety of algorithms

to analyze histological images of hypoxia in xenographed colorectal tumors, and ex-

tract features to construct a spatiotemporal logical characterization of hypoxia. We

also consider characterizing hypoxia by a linear regression functional learning mech-

anism that yields a similarity score. Third, we employ a Bayesian statistical model

checking algorithm that can determine, over some bounded number of simulation

executions, whether hypoxia is likely to emerge under some fixed set of simulation
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parameters, and some fixed logical or functional description of hypoxia. Driving the

model checking process is one of three adaptive Monte Carlo sampling algorithms

we developed to explore the high dimensional space of simulation initial conditions

and operational parameters. Taken together, these three system components formu-

late a novel approach to the inverse problem above, and constitute a design for a tool

that can be placed into the hands of experimentalists, for testing hypotheses based

upon known parameter values or ones the tool might discover. In principle, this de-

sign can be generalized to other biological phenomena involving large heterogeneous

populations of interacting cells.
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L I S T O F F I G U R E S

Figure 1 Nontransformed cells use mitochindrial oxidative phosphory-

lation to support their largely bioenergetic needs of cellular

maintenance and homeostasis. When these cells consume glu-

cose (glu), it enters the glycolytic metabolic pathway and is

transformed into pyruvate; it subsequently enters the TCA cy-

cle in the mitochondria where it is further transformed into

Acetyl-CoA and CO2. When these cells consume oxygen (O2),

it enters the TCA cycle with the Acetyl-CoA and CO2 to pro-

duce H2O and CO2, eventually released by the cell, and pro-

duce ATP that the cell uses. With respect to energy production

(output molecules of ATP per input molecules of glu and O2),

this process is an order of magnitude more efficient than aer-

obic glycolysis (Figure 2). 4
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ence of oxygen (“aerobic glycolysis”) to support their pro-

liferative requirements (Warburg effect). Where glucose (glu)

consumption supports bioengetic needs, glutamine (gln) con-

sumption supports biosynthetic needs (for carbon backbones,

etc.). When these cells consume glu, it enters the glycolytic

metabolic pathway and is transformed into pyruvate (pyr) that

is subsequently reduced to lactate (lac), eventually released

by the cell, and ATP that the cell uses—circumventing the mi-

tochondria. Separately, when these cells consume glutamine

(gln), it enters the TCA cycle in the mitochondria and after do-

nating its carbon, the cell eventually releases glutamate (gla).

Together, glutamic and lactic acids lower the pH of the cell’s

microenvironment. With respect to energy production (output

molecules of ATP per input molecules of glu), this process is

an order of magnitude less efficient than mitochondrial oxida-

tive phosphorylation (Figure 1). 5
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1
I N T R O D U C T I O N

1.1 problem statement

At the tissue level, what are the origins of localized hypoxia within tumors?

1.2 biology background & literature review

1.2.1 Hypoxia

As a tumor grows, it rapidly outstrips its blood supply. High proliferation causes

high cell density that overtaxes local oxygen supply. This leaves portions of the tumor

with an oxygen concentration significantly lower than in healthy tissues. This stress

condition is tumor hypoxia. Hypoxia is strongly correlated with poor prognosis as

it renders tumors less responsive to chemotherapy and radiotherapy [65, 145, 57].

Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes

in available oxygen in the cellular environment, specifically to hypoxia. When ac-

tivated, HIF-1 upregulates several genes to promote survival in low-oxygen condi-

tions. These include glycolysis enzymes that allow cells to synthesize ATP in an

oxygen-independent manner; and vascular endothelial growth factor (VEGF) that

cells release to promote angiogenesis. So hypoxia is directly instrumental in tumor

progression. Prolonged or extreme hypoxia can lead to necrosis, and tumors often

have central regions called necrotic cores. Necrosis in turn activates inflammatory
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responses that produce cytokines that stimulate tumor growth [57]. Recent research

has been investigating the interactions between hypoxic tumor cells and immune cells

(tumor-associated macrophages [116]) and cells that synthesize extracellular matrix

(tumor-associated fibroblasts [52, 22]). Both are involved with inflammatory processes

tied to tumor progression. In the context of the tumor microenvironment, these inter-

actions regulate tumor properties like spatial patterns of cell localization, angiogene-

sis, and collective invasion and migration [132, 21]. So it is of critical theoretical and

clinical significance to understand how, and under what conditions, hypoxia arises

in tumors.

1.2.2 Tumor heterogeneity

Tumors are disorganized, heterogeneous tissues, consisting of many distinct cell

types in spatially complex arrangements. Besides the polyclonal proliferating cancer

cell population undergoing somatic evolution [111], tumors include non-proliferating

stromal cells, fibroblasts, immune cells, extracellular matrix, collagen, blood vessels,

and other structures and cell types [61, 62, 57]—these include “normal” cells that are

conscripted by transformed cells to play collaborative roles in the neoplastic agenda.

So there is a large degree of genotypic and phenotypic heterogeneity composing

a tumor. Since tumors originate in physiological structures that range from simple

epithelial sheets to ducts to neural and muscle tissue, and often invade neighboring

tissues and then metastasize, colonizing distant tissues, the spatial situations and geo-

metric structural relationships of tumors are themselves complex and heterogeneous.

Add to this the dynamic character of the microenvironment, from high frequency

variations in oxygen, nutrient, and signaling molecule concentrations, to longer time
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scale processes like the synthesis of extracellular matrix and blood vessels during

angiogenesis.

1.2.3 Metabolic heterogeneity

We are especially interested in metabolic heterogeneity [69]. In tumors, while we ob-

serve the Warburg effect [151, 150] commonly arise, aerobic glycolysis is not the only

metabolic program cancer cells follow. In fact, there are experiments and mathemat-

ical models to suggest the metabolic strategies tumors use, when considered as a

whole, is quite dynamic [146, 98, 79]. As a tumor progresses, it negotiates a course

of barriers to proliferation [61, 47, 62]. Its gain of oncogenic function [157, 25, 26, 156,

44, 108, 160, 96], and loss of tumor suppressor function [78, 102, 127], give rise to

changing bioenergetic and biosynthetic requirements for proliferation in the face of

the new obstacles [79]. So the tumor cells’ metabolic programs are varied and in flux,

following from this coevolution.

1.2.4 Hypoxia and metabolic heterogeneity

The somatic evolution of early carcinogenesis feeds on sources of phenotypical varia-

tion present in tumor and surrounding stromal tissue, including metabolic variation.

Hypoxia plays an important role in producing intra-tumor metabolic heterogene-

ity, as chronic hypoxia produces sustained conditions of metabolic stress that lead

to phenotypical adaptation and oncogenic transformation that support growth and

proliferation [81], and intermittent hypoxia produces cyclic conditions of oxygen de-
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privation and reoxygenation that are only recently being detected and investigated

[20].
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1.2.5 The cancer metabolism Renaissance

TCA cycle
(oxidative 

phosphorylation)

mitochondrion

cell

1 glucose 2 pyruvate

+36 ATP

4 H20 + 4 CO2 

glycolysis

aerobic conditions

6 O2

2 Acetyl-CoA
+ 2 CO2

Figure 1: Nontransformed cells use mitochindrial oxidative phosphorylation to support their
largely bioenergetic needs of cellular maintenance and homeostasis. When these
cells consume glucose (glu), it enters the glycolytic metabolic pathway and is trans-
formed into pyruvate; it subsequently enters the TCA cycle in the mitochondria
where it is further transformed into Acetyl-CoA and CO2. When these cells con-
sume oxygen (O2), it enters the TCA cycle with the Acetyl-CoA and CO2 to pro-
duce H2O and CO2, eventually released by the cell, and produce ATP that the
cell uses. With respect to energy production (output molecules of ATP per input
molecules of glu and O2), this process is an order of magnitude more efficient than
aerobic glycolysis (Figure 2).
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TCA cycle
(oxidative 

phosphorylation)

mitochondrion

cell

1 glucose 2 pyruvate

+2 ATP

glycolysis

anaerobic conditions

2 lactic acid
(pH--)

2 glutamine

2 lactate

reduction

2 glutamate

Figure 2: Tumor cells often use anaerobic glycolysis even in the presence of oxygen (“aero-
bic glycolysis”) to support their proliferative requirements (Warburg effect). Where
glucose (glu) consumption supports bioengetic needs, glutamine (gln) consump-
tion supports biosynthetic needs (for carbon backbones, etc.). When these cells con-
sume glu, it enters the glycolytic metabolic pathway and is transformed into pyru-
vate (pyr) that is subsequently reduced to lactate (lac), eventually released by the
cell, and ATP that the cell uses—circumventing the mitochondria. Separately, when
these cells consume glutamine (gln), it enters the TCA cycle in the mitochondria
and after donating its carbon, the cell eventually releases glutamate (gla). Together,
glutamic and lactic acids lower the pH of the cell’s microenvironment. With respect
to energy production (output molecules of ATP per input molecules of glu), this
process is an order of magnitude less efficient than mitochondrial oxidative phos-
phorylation (Figure 1).
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Figure 3: Whole-body 2D PET/CT scan using 18F-FDG. A patient with malignant gastroin-
testinal stromal tumors was infused with 18F-FDG, a glucose analog, and then
scanned on a hybrid PET/CT scanner before (left) and after (right) 4 weeks of
administering the tyrosine kinase inhibitor sunitinib. Before therapy, bright regions
show the increased uptake of glucose by the tumors (T). Excess 18F-FDG is excreted
into the urine, thereby migrating and collecting in the kidneys (K) and bladder (B),
which also show bright regions in left and right images. In the case shown here, the
decrease in metabolism of glucose by the tumors predicts the patient’s response to
anticancer therapy. [Image taken from [64].]

The past decade has seen a Renaissance in the study of cancer cell metabolism [91],

challenging and extending Warburg’s original observation of pervasive anaerobic

glycolysis in tumor tissue even in the presence of oxygen [151, 150]—please refer

to Figure 1 and Figure 2. Between their celebrated syntheses of 2000 [61] and 2011
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[62], Hanahan & Weinberg updated their cancer hallmarks to include metabolic re-

programming. The new frontier has been pushed by a group of research laboratories,

headed by Craig Thompson, Matthew Vander Heiden, Lewis Cantley, David Saba-

tini, Ralph DeBerardinis, Eileen White, Joshua Rabinowitz, Chi Dang, and Tak Mak,

among others.

1.2.5.1 The primacy of metabolism

If we take Craig Thompson to be the frontier’s leading spokesperson, then a central

aim of the research programme is to give causal primacy to cancer cell metabolism

in the process of tumorigenesis [152]. In 2012, one of the first symposia on cancer

metabolomics, hosted by the New York Academy of Sciences, presented the research

of many of these laboratories [112]. During his keynote address, Craig Thompson

remarked, “A decade ago, if a paper appeared with the phrase ’anaplerotic’ in the

title it would’ve been summarily rejected by the major journals...not the case any

longer.” It seems clear the subfield has burst from its chrysalis. Several good reviews

of this research have been published over the past decade [46, 16, 154, 88, 28, 31, 30,

68, 78, 64, 80, 101, 87, 18, 19, 152, 29, 27].

1.2.5.2 Ras and Myc

Some research has focused on specific oncogenes, usually Ras and Myc, and their

roles in transforming glucose and glutamine metabolism, respectively. On the Ras

front, one study builds a case for the hypothesis that oncogenic K-Ras decouples

glucose and glutamine metabolism to support cancer cell growth [44], while another

builds a case for the hypothesis that oncogenic K-Ras maintains pancreatic tumors

through regulation of anabolic glucose metabolism [160]. One study examines the
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consequences of enhanced cell-autonomous glutamine metabolism [96]. On the Myc

front, one particularly compelling line of research investigates a phenomenon known

as “glutamine addiction,” where cancer cells acquire an exquisite sensitivity to the

concentration of glutamine, and even slight deprivation leads to widespread apopto-

sis [157, 25, 156, 26, 108]—yet another “Achilles’ heel” of cancer to exploit therapeu-

tically.

1.2.5.3 Metabolic enzymes

Much recent research has focused on the transformative effects of mutations in metabolic

enzymes. One of the key players under active investigation is isocitrate dehydroge-

nase [122, 17]. In addition to isocitrate dehydrogenase, in the context of the most ex-

perimentally studied metabolic pathways supporting cancer cells—glycolysis, TCA

cycle, pentose phosphate, glutaminolysis, and oxidative phosphorylation—other key

players include: lactate dehydrogenase, pyruvate dehydrogenase, fumarate dehydro-

genase, succinate dehydrogenase, and ATP-cytrate lyase. Modeling and predicting

the effects of their mutation or disruption on the network of cancer metabolic path-

ways is the focus of other research [123]. Other studies focus on the proliferative and

pro-survival roles played by specific metabolites, like glysine and serine [140, 72, 97].

1.2.5.4 The embryonic program

One frequently hears comparisons between the heightened proliferation in cancer

and the deregulated embryonic growth program, often referred to as “reversion

to the embryonic state.” At least one study has examined metabolic regulation in

pluripotent stem cells during reprogramming and self-renewal [161]. Another study

investigated the Warburg effect in the developing retina [43].
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1.2.5.5 Hypoxia and metabolic reprogramming

A number of studies have investigated the relationship of cancer cell metabolic repro-

gramming to hypoxia, including the role HIF-1 plays upstream and downstream of

cancer metabolism [129, 130], and consideration of the triad of oxidative stress, tumor

microenvironment, and metabolic reprogramming [42].

1.2.6 Cell-autonomous versus non-cell-autonomous

Most of this intense investigation has focused on the cell-autonomous view of cancer

cell metabolic reprogramming. But as discussed above, a complimentary view is tak-

ing shape that tumor progression does not depend exclusively on cell-autonomous

properties of the cancer cells, but also on properties that can only be observed, simu-

lated, and analyzed at the tissue-scale of whole tumor cell population. With respect

to this latter view, we seek to explore the hypoxia origin question computationally.

1.2.6.1 Specific hypotheses

Certain non-cell-autonomous hypotheses are being investigated that could explain

observations related to evolving cancer cell metabolism in specific situations.

One is the so-called “metabolic symbiosis” between hypoxic and aerobic tumor

cells, where lactate produced by hypoxic cells is taken up by aerobic cells, which

use it as their principal substrate for oxidative phosphorylation. The two cell types

thereby mutually regulate their access to energy metabolites [128, 136, 41, 84].

Another is the so-called “reverse Warburg effect,” where epithelial cancer cells in-

duce aerobic glycolysis in neighboring stromal fibroblasts. These cancer-associated fi-

broblasts then undergo myo-fibroblastic differentiation, and secrete lactate and pyru-
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vate, energy metabolites resulting from aerobic glycolysis. Epithelial cancer cells

could then take up these energy-rich metabolites and use them in the mitochon-

drial TCA cycle, thereby promoting efficient energy production—ATP generation via

oxidative phosphorylation—resulting in a higher proliferative capacity [118, 137].

Still another is the so-called “secondary senescence,” where non-cell-autonomous

interactions between tumor cells and nonmalignant bystander cells add to cell-au-

tonomous modes of tumor suppression during tumor development and progression.

In this scenario, stroma or host immune cells convert tumor-generated signals into

a response that feeds back to the tumor cell population. In particular, suppose Myc

plays a primary role promoting apoptosis in a subset of the tumor cell population,

which leads to the attraction of macrophages; these subsequently engulf the apoptotic

remainders. Phagocytosis-activated macrophages, in turn, exhibit strongly increased

secretion of various cytokines, among them transforming growth factor beta to an

extent that is capable of inducing cellular senescence in surrounding malignant cells

[57, 121, 34].

1.2.7 Cancer metabolomics

For a long time, there was no systematic characterization of metabolic pathways ac-

tive in transformed cells, so the contribution of these pathways in promoting rapid

cancer cell proliferation was unclear. But in 2012, Jain, et al [140, 72] produced a

comprehensive metabolite profile for each of the NCI-601 cancer cell lines. To sys-

tematically characterize cancer cell metabolism, they created cellular consumption

and release (CORE) profiles of 219 metabolites spanning the major pathways of in-

1 The NCI-60 is comprised of sixty well-characterized primary human cancer cell lines
established from nine common tumor types.
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termediate metabolism. The study contains some compelling findings2, but we were

particularly encouraged by the conceptual approach Jain, et al undertook in their

methods, namely, that cancer cell metabolic reprogramming manifests as altered nu-

trient uptake and release. In other words, the gross quantitative properties of cellular

consumption rate and release rate of metabolites (and other particles, like gasses and

signaling molecules) is sufficient to characterize and distinguish cancer cell metabolic

phenotypes from an extracellular perspective.

1.2.8 Returning to Hypoxia

The phenomena of cancer cell metabolic reprogramming and hypoxia can be studied

separately. However, as noted above, hypoxia plays a role in creating the metabolic

heterogeneity we see in tumors. We believe the emergence of hypoxia ought to be

studied from a non-cell-autonomous perspective, as discussed above in the context

of cancer metabolism. Further, we believe the two phenomena can shed light upon

each other, and so we set out to create a computational framework that is flexible

enough to model both. That said, it is the emergence of hypoxia that is the central

focus of this dissertation and the concrete test case of our approach.

1.3 problem conversion

Our aim is to transform this cell-population biological origins problem into a compu-

tational inverse problem, and then attack it using approaches from computer science.

We envision a system that will drive an in silico model forward, from some set of ini-

2 The study implicates a role for glycine in rapid cancer cell proliferation.
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tial conditions and operational parameters, to a recognizable, well-characterized state

of hypoxia formation. In general, a mathematical model takes the form G(m) = d,

where G is usually an ODE, PDE, or algorithm, m is the model, and d is the data. In

the real world, d = G(mtrue) + η, where η is noise. The forward problem is to find d

given m, by computing G(m) (by solving an ODE or PDE, or running a simulation).

The inverse problem is to find m given d. When m and d are continuous functions

of time and space, the task of estimating m from d is a continuous inverse prob-

lem. These can often times be well approximated by discrete inverse, or parameter

estimation, problems, where model and data are vectors of parameters, �m and �d,

respectively.

1.4 problem restatement

With this in mind, we restate the biological origins problem of hypoxia as a com-

putational inverse problem: Given data in the form of histology images from which

we may formally characterize the phenomenon of hypoxia (�d), and given an in silico

model in the form of a stochastic, spatially-resolved simulation of a heterogeneous

population of cells (G), what set of model parameters (�m) will drive the simulation

from its initial state to one that corresponds with sufficient similarity to the formal

characterization of the data?

1.5 computational background & literature review

In the context of systems biology, and in general, we believe, it is useful to distinguish

between parameter estimation from experimental data sets, and qualitative inverse prob-
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lems that aim to reverse engineer bifurcation patterns and other kinds of desired

qualitative behavior [39]. Parameter estimation attempts to either provide values (or

bounds on values) for unknown or difficult to determine parameters, or to determine

insensitivities of data sets to certain parameters, which then are not accessible from

the given data and require additional experimental information for their determina-

tion. Qualitative inverse problems attempt to explore the areas in parameter space

that give rise to a given qualitative behavior, like multiple steady-state solutions, os-

cillations, or deterministic chaos. Our inverse problem is of the qualitative type, and

our given qualitative behavior is characterized by analyzing experimental histological

image data.

Outside of biology, the geosciences are the crucible for inverse problems. A review

by Mosegaard, et al [109], gives numerous examples of qualitative inverse problems in

the geosciences that are tackled with Monte Carlo methods, similar to our approach.

One particularly intriguing study by Wijns, et al [155] is focused on qualitative inverse

modeling in the absence of established numerical criteria to act as inversion targets.

They employ a method of interactive evolutionary computation that provides for the

inclusion of qualitative geological expertise within a rigorous mathematical inversion

scheme, by asking an expert user to evaluate a sequence of forward geological mod-

els. The traditional numerical misfit is replaced by a human appraisal of misfit. They

use this interactive technique to successfully invert a geodynamic model for a con-

ceptual pattern of fault spacing during crustal extension. Though we are interested

in developing an automated method for our problem, we recognize that integrating

human expertise and evaluation, even if occasionally, can make for a more robust

solution. We will consider exploring this in future work.
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Most of the examples of biological inverse problems we find in the literature, in-

cluding this review by Engl, et al, are parameter estimation problems. The examples

of qualitative inverse problems in biology that we find [94, 100, 60] consist in much

smaller dimensions than ours, are formulated as inverse bifurcation problems, and

are based on ODE methods that neglect the rich spatial structure of their systems

and do not handle stochastic system behavior. We have found no studies involving

qualitative inverse problems related to hypoxia emergence. Nor have we found any

approaches that use our combination of computational methodologies.

The closest approach we found to what we envision, is a study by Grosu, et al [58],

who use model checking with a temporal logical characterization to tackle the prob-

lem of learning and detecting emergent behavior in networks of cardiac myocytes.

They develop a hybrid-automata network environment called CellExcite [10] for the

efficient simulation of excitable cells. They perform discrete mode abstraction and

hierarchical superposition of the elementary units by employing a quad-tree decom-

position [56]. At each time step of their simulation, this abstract representation, Q is

compared to their Linear Spatial-Superposition Logic (LSSL) formula, Φ, that char-

acterizes spatial patterns such as spirals (learned through a classification process).

If there is a finite path, π, in Q that satisfies Φ, then their system detects the emer-

gence of spiral patterns and hence the approaching state of fibrillation. While this

approach demonstrates the validity and effectiveness of using temporal logic and

model checking for the problems of specification and detection of an emerging com-

plex biological property, it is not so much concerned with their version of the longer

time scale computational inverse problem: what initial conditions and operational

parameters drive simulated cardio myocytes to a likely state of spiral waves followed

by fibrillation. And the traditional model checking approach they have taken does
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not lend itself well to stochastic models—the motivation for developing the statistical

model checking approach.

1.6 our materials & methods

Our approach rests on three “pillars,” or general system components, which are

independent of, yet related to, each other in ways we shall elaborate on shortly. The

approach we take within each pillar is constrained by its defining problem statement.

1.6.1 Pillar 1

problem statement Implement a spatially-resolved simulation framework for

modeling the emergence of localized regions of hypoxia within a tissue-scale mixed

population of cells. Cellular fitness should be locally determined. Cells should con-

sume and release diffusible particles that represent metabolites, gasses, signaling

molecules, etc. These constitute a complex spatial universe of heterogeneous infor-

mation, stress, and reward, to which cells may adapt using either their type-defined

default behaviors, or type-defined conditionally invoked behaviors that override their

default behaviors. The simulator should be algorithmically simple and efficient. It

should be fully specified by an input vector of numbers that code for initial con-

ditions and operational parameters. Its data structures should be amenable to in-

terrogation and decomposition for the purposes of run-time feature measurers and

the hypoxia detector that integrates them, as specified by Pillar 2. Accordingly, the

simulator should output either {0,1}, if the detector embeds a spatiotemporal logical
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proposition integrator/detector, or a numerical value in [0,1], if the detector embeds

a learned functional form integrator/detector.

our approach We develop such a framework. It is situated in a 3D regular lat-

tice and obeys basic properties of a cellular automaton. Cells of various types occupy

lattice points at every time step, are affected by diffusing concentrations of diffusing

particles of various types, and undergo local-fitness-based probabilistic reproduction.

Using the Cleveland, et al framework as a conceptual starting point, we then extend

it in significant and novel ways to further suit our needs. First, we can support any

number of cell types and any number of particle types (each with its own diffu-

sion rate). Second, each cell type has default behaviors and conditionally-invoked

behaviors, which can implement phenotypical adaptations and mutations, and state

machines composed of two or more cell types. Third, initial, and upper- and lower-

bounded basal concentrations can be set for each particle type. Fourth, each cell type

can be replaceable or not, and reproductive or not. Fifth, initial lattice occupation can

be delayed to establish complex diffusion gradients to form prior to simulation. The

3D lattice data structure is simple, regular, and easy to interrogate for the purposes

of feature measurer and feature integrator modules we can later implement to de-

tect emergent phenomena, such as necrotic core formation and stable local regions of

hypoxia like we observe in xeno-graphed hypoxic tumor histology.

1.6.2 Pillar 2

problem statement Derive a spatiotemporal characterization of hypoxia in

human tumor tissue from a set of histological images.
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our approach Our concrete focus into the phenomenon of tumor cell hypoxia

begins with an experiment where human colon tumor cells were xeno-graphed into

a nude mouse, and upon subsequent analysis were determined to exhibit localized

regions of hypoxia. This data is in the form of histology images taken from anti-

pimonidazol stained tumor sections. Our approach consists in extracting qualitative

and quantitative features from these histology images. We classify these as: (1) fea-

tures that derive from segmenting the image into the three tissue types depicted:

viable tumor cells, hypoxic tumor cells, and necrotic tumor cells; (2) features related

to the intra-lesion hypoxia gradient, as measured from radial distance away from

the nearest vessel; (3) features that derive from multiscale analysis; and (4) features

that relate to qualitative generalities about bounded and nested structure. Once we

specify a set of features, we proceed in two separate but related directions. First,

we attempt to construct a logical proposition to describe hypoxia in space and time

using a simple spatiotemporal logic (also expressible as a model logic [70]) whose

primitives are image feature predicates. This is a human-driven process, following

from human learning and generalization. Second, we attempt to construct a linear re-

gression function that learns what hypoxia is in terms of estimated linear coefficients

on the image feature terms. This is an machine-driven process, kept on the rails by a

combination of false-positive and false-negative control, and feature dimensionality

reduction where possible.

1.6.3 Pillar 3

problem statement Identify the initial conditions and operational parameters

of an in silico model (simulation) that result in hypoxia, as characterized by Pillar 2.
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our approach The nature and extent of the simulation parameter space de-

rives from the algorithmic specification given in Pillar 1. A number of parameters

define any given simulation, those that specify initial conditions and those that spec-

ify the entities that operate in the simulation. Initial condition parameters specify:

the initial positions in the 3D lattice of the cells of various types; the initial and basal

upper- and lower-bound concentrations of the various particle types; and the delay

time indicating when to place the cells in their initial positions. Operational param-

eters specify: each particle type’s diffusion rate; the consumption and release rates

and impact factors of each cell type for each particle type; whether each cell type is

replaceable and whether its reproductive; and the conditional behaviors for each cell

type. Together, these constitute a high dimensional parameter space.

For our problem, we will assume that in the absence of simplifying factors or ex-

pert knowledge of the biology, each parameter should be modeled as a random vari-

able having a uniform, independent probability distribution. Our aim here is modest:

sample the large parameter space using a vanilla Monte Carlo algorithm [105] and

accumulate families of nearby solutions. We do attempt to make this process more

efficient by learning from each sample’s truth outcome if it is in 0,1, or branching-and-

bounding sampled subspaces where the sample values are in [0,1]. In this way, we

propose two simple “adaptive Monte Carlo” methods, MC-Boost and MC-Walk, that

employ boosting of the independent probability distributions upon successful sam-

ples, and constrained random walks around successful samples, respectively. And

we propose a simple adaptation to the traditional branch-and-bound algorithm, MC-

Branch-and-Bound: instead of systematically exploring a subspace of problems, we

employ constrained Monte Carlo sampling of each subspace.
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Our model (simulation), once specified by a coordinate from the high dimensional

parameter space, is still stochastic, owing to the cells’ manner of probabilistic repro-

duction. Suppose a feature integrator/detector is embedded in the simulator that

decides when the formal characterization of hypoxia—be it a spatiotemporal logical

proposition, φ, or a learned linear function, f—is satisfied. It will then enable the

simulator to return a value in {0,1} or [0,1], respectively, where the first is a the evalu-

ation of a logical proposition, and the second is a normalized similarity score. Thus,

depending on the detection scheme being implemented, the simulator’s outcome can

be modeled as either a Bernoulli random variable or a numerical random variable.

The first case is the province of statistical model checking. Jha, et al [77] give the

Bayesian statistical model checking algorithm we employ here. It runs the simulator

some bounded number of times until enough confidence accrues to the null hypoth-

esis (the simulator satisfies, within some bounded probability, the spatiotemporal

logical proposition describing hypoxia), or its alternative hypothesis (it does not).

This verdict constitutes the Bayesian-tested outcome of the simulation with respect

to satisfying φ. In a similar, and perhaps trivial, sense, the numerical [0,1] outcome

of the simulation should be tested repeatedly until some threshold on the numeri-

cal stability of its mean value is surpassed. Here the simple approach we use is to

examine its mean and standard deviation, and apply a threshold to its CV = σ
μ

.

This pillar presents two distinct ways of implementing a two-level simulation

driver. The top level explores by sampling the high dimensional parameter space,

testing a coordinate in that space by passing control down to the lower level that

repeatedly runs the specified simulation until a stable outcome is achieved. It then

passes the binary verdict up to the top level that records and eventually responds to

the coordinate’s computed truth value.
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1.6.4 System description

Now we describe how we organize the three pillars above into a solution to the com-

putational inverse problem stated above. We show this in three views, corresponding

to: the problem stages, the system relationships established during the design phase,

and the structure of the system’s run time execution.

1.6.4.1 Problem view

In the problem view shown in Figure 4, we depict the problem dependencies and

methods for the computational solution presented here. Solving the inverse problem

depends on exploration of the simulation configuration space, accomplished by the

adaptive sampling methods of Pillar 3. Exploration depends on robust detection of

the hypoxia characterizations being satisfied in the simulation, accomplished by ei-

ther the Bayesian statistical model checking or the mean-variance thresholding meth-

ods of Pillar 3 that drive the simulations to a stable result. Detection depends on a

description of hypoxia derived from the available evidence, accomplished by either

the spatiotemporal logical or linear regression functional characterization methods of

Pillar 2. And description depends on analysis and synthesis of the histology images,

accomplished by the image analysis methods of Pillar 2.
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Figure 4: Problem view. System problem dependencies and methods for the computational
solution presented here.
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1.6.4.2 Design-time view

At design time, the components of the system either specify or inform some of the

others, as shown in Figure 5.

A number of requirements inform the design of the simulator. If we are computa-

tionally constrained, then we cap the number of parameters by which the simulator

may be configured by some constant κ. For efficiency as an “inner loop” in the overall

system execution, we require the simulator halts once the embedded logical feature

integrator detects hypoxia, and that 0 or 1 then be returned. The embedded feature

measurers require the simulator use data structures that are easy to interrogate and

decompose. Lastly, the feature integrator requires the simulator to return 0 or 1, or a

real value in [0,1], depending on whether the feature integrator is logical or functional

in nature.

As mentioned, the simulator embeds feature measurers and feature integrators/de-

tectors. The simulator specifies its data structures, D, and its configuration parame-

ter space, C. The configuration parameter space informs the adaptive sampler, along

with any expert biology knowledge, K, which can prune and constrain C prior to its

exploration. The data structures specify the set of simulator features, Fs, that may be

implemented. These in turn inform the hypoxia characterization process, since we

must try to do this in terms of possible features, which may be defined as, Fs ∩ Fi,

the intersection of simulator features and the image features. The image features, Fi,

are specified by image analysis that is informed by the images themselves, I, which

are specified by biological experiment. Hypoxia characterization specifies the inter-

section of features and subsequently informs the design of feature measurers, the

spatiotemporal logical characterization, and the linear regression functional charac-

terization. Spatiotemporal logical characterization specifies the proposition φ, which
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then specifies the logical feature integrator/detector. Linear functional characteriza-

tion specifies the functional form f, which then specifies the functional feature inte-

grator/detector.

By execution time, we assume the system design has been settled and imple-

mented.

24



1.6 our materials & methods

Simulator

configuration 
space

(C)

Adaptive
Sampler

Biological
Experiment

Image 
Analysis

Hypoxia
Characterization

Spatiotemporal
Logical

Characterization

Linear Regression
Functional

Characterization

Logical Feature
Integrator/Detector

Functional Feature
Integrator/Detector

Φ ƒ

image features
compatible with

simulator feaures
(Fs ∩ Fi)

image 
features

(Fi)

images
(I)

data
structures

(D)

simulator
features

(Fs)

Expert
Biology

Knowledge
(K)

Feature
Measurers

Adaptive Sampler
Dimensionality
Requirement:

# parameters < κ

Feature Integrator
Requirement:
output {0,1} or 

[0,1], according to 
integration type

Feature Measurer
Requirement:

data structures 
easy to interrogate 

and decompose

Short Circuit
Requirement:

halt simulator and 
return {0,1} when 

Φ satisfied

informs

informs

informs

specifies

specifies specifies

specifies

informs

specifies

informs

informs

specifies

informs informs informs

specifies specifies

specifies specifies

embeds

Requirements

Figure 5: Design-time view. System design inputs and specifications for the computational
solution presented here.
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1.6.4.3 Run-time view

We show the two possible execution paths of the system in Figure 6. These correspond

to the choice of whether to use a logical or functional characterization/detection

scheme.

In the logical scheme, we assume three global parameters: the configuration pa-

rameter space, C, a probability threshold, θ, and a simulation time threshold, T . The

adaptive Monte Carlo sampling method selects a c ∈ C and calls the Bayesian sta-

tistical model checker with c and θ. This then calls the simulator with c, thereby

configuring the simulator for an execution. The simulator embeds the logical feature

integrator/detector and feature measurers, together which implement φ. The simu-

lator either halts early, returning 1, or runs its full course (to time T ), returning 0.

Depending on this outcome, the Bayesian statistical model checker decides whether

or not to execute another simulation of c. Once it halts, the Bayesian statistical model

checker returns its binary verdict to the adaptive Monte Carlo sampler, which records

this evaluation and adapts its subsequent sampling on the basis of it.

In the functional scheme, we assume three global parameters: the configuration

parameter space, C, a coefficient of variation threshold, τ, and a simulation time

threshold, T . The Monte Carlo branch-and-bound sampler selects a c ∈ C and calls

the mean-variance thresholder with c and τ. This then calls the simulator with c,

thereby configuring the simulator for an execution. The simulator embeds the func-

tional feature integrator/detector and feature measurers, together which implement

f. The simulator halts at T and returns its “high water mark” normalized similarity

score, a real number in [0,1]. Depending on this outcome, the mean-variance thresh-

older decides whether or not to execute another simulation of c. Once it halts, the

mean-variance thresholder returns its binary verdict to the Monte Carlo branch-and-
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bound sampler, which records this evaluation and adapts its subsequent sampling

on the basis of it.

Adaptive
Monte Carlo

Sampler

Monte Carlo
Branch-and-Bound

Sampler

Bayesian Statistical
 Model Checker

Mean-Variance
Thresholder

Simulator

Logical Feature
Integrator/Detector

Feature Measurers

Simulator

Functional Feature
Integrator/Detector

Feature Measurers

Given: C, θ, T Given: C, τ, T

calls:
c ∈ C, θ

calls:
c ∈ C, τ

calls:
c

calls:
c

returns:
{0,1}

returns:
[0,1]

returns:
{0,1}

returns:
[0,1]

n
times

n
times

{ }implements
ƒ

implements
Φ

Figure 6: Run-time view. System execution calls and returns for the computational solution
presented here.

1.6.5 The pillars in detail

We have designed a modular system; the three pillars may stand independently from

the others, then be coordinated at design time. Should we find a better simulation

framework, we can replace the current one and it will not jeopardize (though it will

distinctly inform the design of) the other system components. Likewise for replac-

ing the type of data used for characterization. Likewise for replacing the algorithms
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employed to sample high dimensional space and ascertain stability of the stochastic

simulator. These may be replaced without destroying the overall system design. The

system is also extensible and scalable, especially the components using feature-based

characterization, since one may select an arbitrary number of features. Taken together,

these three system components formulate a novel approach to the inverse problem

stated above, and constitute a design for a tool that can be placed into the hands

of experimentalists, for testing existing and new hypotheses, either based on known

parameter values, or on ones the tool discovers. In principle, this design can be gener-

alized to other biological phenomena involving large heterogeneous populations of

interacting cells.

Now let us consider each of the pillars in detail over the course of the next three

chapters.
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2
S I M U L AT I O N F R A M E W O R K

2.1 introduction

2.1.1 Problem statement

Implement a spatially-resolved simulation framework for modeling the emergence of

localized regions of hypoxia within a tissue-scale mixed population of cells. Cellular

fitness should be locally determined. Cells should consume and release diffusible par-

ticles that represent metabolites, gasses, signaling molecules, etc. These constitute a

complex spatial universe of heterogeneous information, stress, and reward, to which

cells may adapt using either their type-defined default behaviors, or type-defined

conditionally invoked behaviors that override their default behaviors. The simulator

should be algorithmically simple and efficient. It should be fully specified by an in-

put vector of numbers that code for initial conditions and operational parameters. Its

data structures should be amenable to interrogation and decomposition for the pur-

poses of run-time feature measurers and the hypoxia detector that integrates them,

as specified by Chapter 3. Accordingly, the simulator should output either {0,1}, if

the detector embeds a spatiotemporal logical proposition integrator/detector, or a

numerical value in [0,1], if the detector embeds a learned functional form integra-

tor/detector.
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2.1.2 Background & literature review

2.1.2.1 Canonical model designs and their trade-offs

When one is deciding how to create a computational model of a cell population, the

primary choice is whether it should be continuous or discrete (or a hybrid). Usually,

this breaks out into two canonical design dimensions1. In the first, one can represent

cells as points, or as being composed of sub-elements. In the second, cells can occupy

positions on a fixed, regular lattice, or positions off-lattice.

The lattice-gas cellular automata model [63] is an example of cells-as-points on a

lattice. Hatzikirou, et al. use it to model cell migration in directional and oriented

fields. It uses channels to alleviate the problem of collisions found in classical cellular

automata models. Many individuals can move synchronously in each time step. It

accomplishes this using a two-step transition rule. First, interaction: update channels

and particles in each node. Second, propagation: deterministically move the particles

based on their direction and velocity.

The off-lattice hybrid discrete-continuum model [76] is an example of cells-as-

points off-lattice. Jeon, et al. use it to model tumor growth. It models cells as dis-

crete points. They migrate using random and biased movement; internal and exter-

nal forces determine their motion; and they grow, proliferate, die, become quiescent,

and mutate. It models chemical fields as continuous functions of space and time. One

can thus model extracellular matrix density, and concentrations of matrix degrading

enzymes and nutrients. Cellular forces include: cell-cell soft sphere repulsion force,

1 I would like to gratefully acknowledge Terri Grosso at the CUNY Graduate Center for
giving a review presentation on 26 June 2012 of these canonical modeling dimensions,
and providing the example models, in the context of her research into computational
modeling of cell migration.
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haptotactic force, and cell-cell adhesion force. In terms of the chemical gradients:

the extracellular matrix degrades based on its concentration and that of the matrix-

degrading enzymes, and the rate enzyme-matrix degradation; matrix-degrading en-

zyme concentration depends on diffusion through the extracellular matrix, produc-

tion by cells, and its natural decay rate; and nutrient concentration depends on diffu-

sion, concentration of extracellular matrix, and cell consumption and natural decay.

The cellular Potts model [13] is an example of cells composed of sub-elements on

a lattice. Bauer, et al. use it to model tumor-driven angiogenesis and the transwell

migration assay. It was developed to study bubbles and other surface-energy-driven

processes. It conceives of cells as fluid droplets. A cell is a contiguous set of lattice

locations that share a unique index. The lattice evolves as a succession of attempts

to exchange neighboring lattice site indices. It accomplishes this by step-wise, syn-

chronous minimizing the total energy of the system, accepting those proposed lattice

site index exchanges that do this with a Boltzmann probability. The model represents

the total energy of the system as a function of cell-cell adhesion, cells’ current and

target volumes, and other energy terms, like chemotaxis.

The sub-cellular viscoelastic model [73] is an example of cells composed as sub-

elements off-lattice. Jamali, et al. use it to model emergent and complex cellular mor-

phology. The model aims to represent the internal structure of the cell and then

model cellular processes such as: adhesion, growth, mitosis, migration, polarization,

a distinct nucleus, cell-environment interactions, and biomechanical behavior. Cells

are modeled as an approximately circular membrane and an internal nuclear mem-

brane; the cell is then divided into some number of segments, and the mass of the

cytoskeleton and nucleus are divided between the segments. Points are connected by

Voigt subunits, where purely viscous elements are a damper, purely elastic elements
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are a spring, and units are connected in parallel. Total force on the cell is computed

as the sum of forces exerted: from inner structure of the cell; from interaction with

other cells; from interaction with the extracellular matrix; from external sources; and

from contractility during cell division.

Considering again the canonical modeling dimensions, one should weigh several

trade-offs. When one models cells as points, one can represent large numbers of cells

in a computationally efficient manner; but the model is coarse-grained, neglecting cell

mechanics and other biophysical considerations. When one models cells composed of

sub-elements, one can better represent cell shape, cytoskeleton, and internal structure;

but this requires more computation and one can therefore represent fewer objects.

Lattice-based models are computationally efficient and afford a simpler algorithmic

design; but the complexity depends on lattice size, not the number of objects, and the

rigid structure of the lattice can affect morphology and behavior. Off-lattice models

have a complexity that depends on the number of objects being modeled, and one

can model cell movement and morphology continuously; but collision detection is

computationally expensive, and interactions between nearby elements can be more

expensive than using a lattice.

2.1.2.2 Biophysically realistic models

Plank, et al. [119] compare lattice-based and lattice-free approaches to the problem

of modeling collective cell behavior with crowding effects in individual-based (agent-

based) models. They note that lattice-based models implicitly assume a proliferative

population will always eventually fill the lattice. They develop their own individual-

based lattice-free model that incorporates cell crowding effects, where the confluent

cell density is not predefined as with a lattice-based model, but is instead an emergent
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model property. As a consequence of the more realistic, irregular configuration of

cells in the lattice-free model, the population growth rate is much slower at high

cell densities, and the population cannot reach the same confluent density as an

equivalent lattice-based model.

Xavier, et al. [159] developed an elaborate simulation framework for multidimen-

sional modeling of activity and structure of multi-species biofilms. This integrates

concepts from previous biofilm models into a realistic biophysical simulation that

runs in a 2D or 3D off-lattice environment. They pay much attention to biomass com-

putation, as this is one of the principal concerns in biofilm modeling. In the particular

simulations they show, they use 25 model parameters that pertain to: solute species,

particulate species, yield coefficients, rate parameters, and computation parameters.

The simulation proceeds as a cycle over the following steps: (1) determine the time

step, Δt, for the current iteration at time t; (2) grow every biomass agent, dividing if

its radius surpasses a threshold, and excreting extracellular polymeric substances if

these surpass a threshold; (3) spread the cellular constituents, resettling them accord-

ing to a global energy minimization, advancing the biofilm front; (4) detach biomass,

including erosion and sloughing; (5) update the bulk concentration of solutes, per-

forming global mass balances for solutes with dynamic behavior; (6) update the spa-

tial concentration fields of solutes to steady state; (7) advance the simulation time to

t+ Δt. One can easily define a stoichiometric table for one’s simulation, specifying

the constituents, reactions, and rate expressions in a concise manner. Notably, the sim-

ulation cannot explicitly perform apoptosis, nor can it implement conditional logic.

It is a deterministic framework as it implements reactions as ODEs and numerically

solves PDEs for the spatially resolved particle concentrations.
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2.1.2.3 Multiscale models

In addition to the models described above, there is an extensive literature on multi-

scale cancer modeling [24, 32]. These models aim to incorporate biological properties

that range in length and time scales pertaining to molecules, cells, tissues, organs,

and whole organisms. We laud this effort; cancer is a systems disease that requires

the unified consideration of a broad set of structures and environments that span

many scales. Often these models, some of which are rigorously derived [24], are

complicated and computationally expensive. While cancer metabolism is a multi-

scale phenomenon [91], we restrict our attention to the scales that define a large

tumor cell population within a single tissue. While we do not seek to completely

neglect biophysical detail in our model, we do seek a coarse-grained, minimal model

that can capture at least some of the qualitative features that define local regions of

hypoxia in histological evidence from in vivo experiments. For our purposes here,

we also seek a model that is computationally efficient, since in the broader context

of this dissertation, we understand it will be the “inner loop” of a large processing

regime to (at least partially) solve the inverse problem of hypoxia formation. With all

of this under consideration, we chose to implement our simulation representing cells

as points based on a lattice.

2.1.2.4 Cancer metabolism models

Astanin, et al. [3] develop a mathematical model of the Warburg effect in tumor cords.

It links two approaches: a continuous medium to describe the movement and the me-

chanical properties of the tissue, and a population dynamics approach to represent

tumor-intrinsic heterogeneity and instability. While one can use their framework to

build models which cover several stages of tumor progression, they focus on describ-
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ing the transition from oxidative phosphorylation to purely glycolytic metabolism in

tumor cords. Growth and decay of the cells and uptake of the nutrients are related

through ATP production and energy costs of the cellular processes. Intriguingly, they

assume the Warburg effect is an irreversible, all-or-nothing event triggered by hy-

poxia. Mathematically, this model leads to a free boundary problem where domains

in contact are characterized by different sets of equations. They accurately stitch to-

gether the solution by developing a modified ghost fluid method. They employ PDE

models for studying the boundary shape changes, exploring growth rates and result-

ing spatial structure of the glycolytic and oxidative phosphorylation subpopulations

over a range of various parameter values. Consequently, the model is determinis-

tic, and spatial heterogeneity can be modeled only to a limited extent, where sub-

populations are contiguous and occupy adjacent layers [158].

2.1.2.5 Game theory cancer models

There is a growing literature of game theory models of cancer population dynamics

[141, 142, 124, 8, 9, 49, 50, 48, 45, 103, 7, 12, 11]. Most of these early studies model

tumor-tumor or tumor-stromal cell interactions in a generic way, or explore evolu-

tionary dynamics of tumorigenesis, or the emergence of tumor invasiveness. None of

them address cancer metabolism explicitly.

2.1.2.6 Well-mixed models

One recent study, by Kareva [82], develops a mathematical model based on game

theory to investigate cancer metabolism. It is well understood that glycolysis is ener-

getically inefficient relative to oxidative phosphorylation, producing 2 versus 30-36

ATP molecules, respectively, for each molecule of glucose. And glycolysis secretes 2
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molecules of lactic acid for each molecule of glucose as a byproduct. The ensuing acid-

ification is toxic for healthy tissues, enabling glycolytic cells to be better competitors

at the cost of their being energetically inefficient. However, a single cell is unlikely

to secrete enough lactic acid to cause significant changes to the microenvironment.

The core population of glycolytic cells needs to be large enough to gain this com-

petitive advantage. Kareva casts the problem as a prisoner’s dilemma game: from

the perspective of metabolic payoffs, it is better for cells to cooperate and become

better competitors, but neither cell metabolic phenotype has an incentive to unilat-

erally change its metabolic strategy—they are in a Nash equilibrium [110], and it

can be argued that metabolically, oxidative phosphorylation is an evolutionary stable

strategy [134, 135] that cannot be “invaded” by the glycolytic strategy. In this for-

mulation, Kareva addresses the question of how such a glycolytic population could

arise. One intriguing aspect of the game theory perspective is the notion of “public

goods” in the cell ecology. For example, intracellular stores of nutrients can be recy-

cled by neighboring cells [37, 38, 83]. She shows that changing the environment can

take cells out of their Nash equilibrium, and that it is cooperation [6, 5, 4, 114] that

can lead to the cell population committing “evolutionary suicide.” The author devel-

ops an ODE model for studying the population dynamics governed by the prisoner’s

dilemma payoff matrix, exploring growth rates of the glycolytic and oxidative phos-

phorylation subpopulations over a range of various parameter values. Consequently,

the model is deterministic and assumes a well-mixed population, neglecting spatial

modeling properties altogether [158]. For the purposes of this dissertation, we restrict

our focus to spatiotemporal, mixed-population models of cancer metabolism.
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2.1.2.7 Spatially-resolved models

We further restrict our focus to individual-based, spatially-resolved, diffusive models

that can represent the gross metabolic phenotypical properties measured by Jain, et al.

[140, 72], namely distinct consumption and release profiles, and particle types with

distinct diffusion rates. This brings us to the simulation framework developed by

Cleveland, et al. [23]. They examine from a game theoretical perspective the popula-

tion dynamics of “cooperator” and “cheater” cells under metabolic stress conditions

and high spatial heterogeneity. In general, cooperators obey rules of communal sur-

vival, and cheaters do not. In a cancer setting, cooperators are the highly adapted and

differentiated cells that make up the body under normal conditions, while cheaters

are the rapidly proliferating cells inside a tumor. The authors are not interested in

how cheaters become cheaters, but instead seek to examine the dynamics once the de-

fection to cheat has occurred. Their ultimate aim is to understand the movement and

growth of a mixed tumor cell population in a complex landscape where metabolic

stress is a strong function of position. They draw upon their prior work to use a sim-

ple bacterial model to gain insights into the evolution of resistance to drugs under

competitive and metabolic stress conditions.

In three ways their approach is similar to that of Kareva. First, they cast the inter-

action dynamics between the two cell types—be they wild-type or GASP (Growth

Advantage in Stationary Phase) mutant bacteria, or distinct metabolic phenotypes—

as a prisoner’s dilemma game, governed by a prototypical payoff matrix. Interactions

between players are matrix operations composed of: each player’s consumption and

release rates of the different particle types, local normalized concentrations of those

particle types, and the quantified impacts those particle types upon each player. Sec-

ond, they are interested in modeling “public goods”. Here they cite the research
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C. Athena Aktipis has done in game theoretic agent-based modeling in spatially-

resolved environments [1, 2], which implements a “walk away” strategy where a

player cells leave a region after they determine that neighboring cells fail to pro-

duce sufficient “public goods”; this allows cooperators to gather together rather than

with selfish agents, and thereby the population can avoid annihilating the cooper-

ative subpopulation. Third, they are interested in discovering emerging patterns of

cooperation between the two cell types.

In contrast to Kareva, they claim this will happen when the traditional game the-

oretic framework is modified to account for heterogeneous stress patterns, like in

their spatially-resolved simulation; so while Kareva developed a well-mixed, non-

spatial ODE model to study this phenomenon, Cleveland, et al. believe the spatial

modeling properties are elemental to the phenomenon. Here they cite the seminal

study of Nowak & May [115]—which discusses the effects of spatial resolution on

the evolution of cooperation—to make a point that spatially-resolved models and

their well-mixed counterparts often produce very different outcomes: diversity and

coexistence result from spatial models, while homogeneous populations result from

well-mixed models. They also cite a study by Kerr, et al. [85], to make the related point

that in spatially-resolved models, fitness is determined locally by neighborhood in-

teractions and stresses, rather than globally by uniform stresses; and their simulation

results concur with those two studies that the more localized fitness is determined,

the more cooperative the outcome, while the more globally fitness is determined, the

more zero-sum the outcome.

Despite the appeal of implementing advanced strategies like “walk away,” which

require agents explicitly model their migration, the authors found that approach to

be more deterministic than what their present Markovian approach based on pure
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statistics aimed to implement, though they did impose spatial gradients of externally

applied “public goods” in their model by introducing special “reservoir” cells that

function like vessels.

2.1.3 Our materials & methods

We found the authors’ simple, Markovian, spatially-resolved simulation framework

to be well suited to our needs for a fast, minimal simulation of a metabolically

and spatially heterogeneous cell population with diffusible metabolites, gasses, and

signaling molecules, where we might see important emergent phenomena such as

necrotic core formation, and stable local regions of hypoxia like we observe in xeno-

graphed hypoxic tumor histology. We know their framework can implement simple

game theoretic strategies and give rise to emergent cooperation—as evinced in their

study of coexisting subpopulations—so we can exploit this extensibility in future

work that explores evolutionary game theory [134, 6, 135, 5, 66, 4, 113, 114, 53] and

signaling games [95, 133]. The 3D lattice data structure is simple, regular, and easy

to interrogate for the purposes of feature measurer and feature integrator modules

we can later implement to detect emergent phenomena. Using the Cleveland, et al.

framework as a starting point, we then extend it in significant and novel ways to fur-

ther suit our needs. First, we can support any number of cell types and any number

of particle types (each with its own diffusion rate). Second, each cell type has default

behaviors, as before, and conditional behaviors, which can implement phenotypical

adaptations and mutations, and state machines composed of two or more cell types.

Third, initial, and upper- and lower-bounded basal concentrations can be set for each

particle type. Fourth, each cell type can be replaceable or not, and reproductive or
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not. Fifth, initial lattice occupation can be delayed to establish complex diffusion

gradients to form prior to simulation.

2.2 materials & methods

2.2.1 Cellular automaton

The universe of the simulation is a 2D or 3D cellular automaton [148]. Hereafter,

for the sake of defining the simulation, we shall assume a 3D configuration, though

many of the examples appearing on the page will naturally lend themselves better to

a 2D presentation. A cellular automaton works according to the following principles.

Each box inside a regular 3D lattice represents a cell, whose position is specified by a

three-tuple, (i, j,k). Each cell is one of a finite number of states. For simplicity, let us

assume these states are “on” and “off.” Each cell has a well-defined neighborhood of

adjacent cells, where neighborhood can be defined in a flexible way, most commonly

immediate neighbors. All cells are initialized to some state at time = 0. Then, at

each subsequent time step (time = 1, 2, ...), the cells’ states are updated according

to fixed rules that determine the new state of the cell as a function of the cell’s

current state and those of its neighbors. The state update rules are applied uniformly

and simultaneously to the whole lattice of cells. In this way, the cellular automaton

evolves as a whole, and patterns in the population of cells emerge over time that

cannot be predicted without performing the requisite computation.
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2.2.2 The spatial simulation

In the context of simulating large, heterogeneous cell populations, we need a flexible

and extensible framework. We first specify the dimensions of our universe as x_dim,

y_dim, and z_dim parameters—running examples will execute on a 40 x 40 x 40

lattice—and the total running time of the simulator, where time steps are in arbitrary

time units, and can be scaled using a time parameter, τ. We want to simulate M

types of cell: T = {v, ε,α,β,γ, δ, ...}, where v and ε are special types related to a blood

vessel and empty (unoccupied) space, respectively. We want to simulate N types of

diffusible particles that cells can consume and release. At any given time, each (i, j,k)

is occupied by some t ∈ T . Each cell type, t ∈ T\{v, ε}, has a two sets of parameters

that specify its behavior.

First are the default parameters. These include: ct,p, the consumption rate of par-

ticle type p; rt,p, the release rate of particle type p; σt,p, the impact factor of each

particle type p; whether or not t is replaceable; and whether or not t is reproductive.

These can be thought of as implementing the cells’ genotypical (native) behaviors, as

viewed from an outside, cell population perspective.

Second are the conditional parameters. These are formulated as trigger-action pairs.

A trigger is a set of one or more predicates that are based on particle concentrations,

as measured by the cell in its locality. All trigger predicates must be true to execute

the associated action. An action is a set of commands which are executed sequentially.

The possible commands include: apoptosis; become (“jump to”) another cell type,

t ′ ∈ T\{v, ε, t}; set the consumption rate of particle type p to a target value; set the

release rate of particle type p to a target value; set the impact factor of particle type p

to a target value; set the Boolean condition of being replaceable; and set the Boolean
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condition of being reproductive. This conditional degree of flexibility grants us the

ability to implement cell mutational events (the action to become another cell type)

and the cells’ phenotypical response behaviors (all of the actions), again as viewed

from an outside, cell population perspective.

The initial cell population in the lattice constitutes another set of parameters. The

default cell type for the lattice is empty (ε). One can manually specify cell types at

individual locations, or can algorithmically do this, using arbitrary functions, includ-

ing stochastic ones, to specify the initial population. An initialization delay parameter

specifies when the all-empty lattice is replaced by its initial configuration. Its default

value is 0, but can be set to any future time step, to allow, for example, one to es-

tablish a concentration gradient (or set of gradients), that may take many time steps,

prior to introducing the cells into it.

Each time step drives the simulation through four phases. Particles are consumed

and released according to the cell type’s consumption and release rates, respectively,

for that particle type. Particles continually diffuse in R3 according to the particle

type’s diffusion rate. A cell’s fitness is first individually computed as a function of

impinging concentrations of the particles in combination with the cell type’s impact

factors corresponding to each particle type. Then its fitness is computed from the

fitness scores of individuals in its neighborhood, according to their cell types. This

defines a distribution that will be statistically sampled to determine what cell type

each lattice location will contain in the next time step.
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2.2.3 Phase 1: consume and release particles

Let P denote the set of particle types, and ρp(i, j,k) denote the normalized concen-

tration of particle type p ∈ P at location (i, j,k). Concentrations of particles evolve

at each time step by the following. For each particle type p ∈ P, for each cell type

t ∈ T\{v, ε}, set

ρp(i, j,k) = ρp(i, j,k) · (1− ct,p + rt,p). (1)

Note that cell type v (vessel) has some special default properties related to particles.

These defaults implement an assumption we make that a vessel is a perfect source for

certain particles (releasing them to full concentration) and a perfect sink for others

(consuming them to zero concentration). That is, if location (i, j,k) contains cell type

v, then ∀τ : ∀p ∈ P, rv,p = 1 : ρp(i, j,k) = 1 and ∀τ : ∀p ∈ P, cv,p = 1 : ρp(i, j,k) = 0.

These default properties can be overridden by specifying non-unity vessel consump-

tion and release rates for each particle type.

The simulator has additional parameters related to particle concentrations. Initial

concentrations, and basal upper and lower bounds, can be set for each particle type.

For the latter, the simulator enforces the bounds in this phase at each time step: those

concentrations falling below the lower bound are set to the lower bound; those rising

above the upper bound are set to the upper bound.
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2.2.4 Phase 2: diffuse particles

At each time step, each lattice point’s concentration of the particles it contains is

updated according to the diffusion rate, Dp, of each particle type p. Each particle

type’s concentration field, ρp, undergoes an isotropic 3D Gaussian convolution, using

a 5 x 5 x 5 mask with σ =
√

2Dp. The n-dimensional Gaussian kernel is defined as

Gn(�x,σ) =
1

(
√

(2π)σ)n
e
−

|�x|2

2σ2 . (2)

We assume input array values outside the bounds of the array are equal to the

nearest array border value. We accomplish the convolution using Matlab’s imfilter

command.

Equivalently, consider each individual particle taking a random walk in each of the

three dimensions [67]. Let q be a number drawn from a standard normal distribution,

q ∼ N(0, 1), and τ be a scaled time variable with respect to the simulation’s clock tick

value. Concentrations of particles diffuse at each time step by the following. For each

particle p ′ of type p ∈ P,

Δxp ′ = Δyp ′ = Δzp ′ = q
√

2Dpτ. (3)
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2.2.5 Phase 3: compute fitness scores

For each location in the lattice (i, j,k), and for each cell type t ∈ T\{v, ε}, let us define

a local fitness function

ft(i, j,k) = [σt,1 · ρ1(i, j,k) + σt,2 · ρ2(i, j,k) + ... + σt,n · ρn(i, j,k)] · It, (4)

where ρp(i, j,k) denotes the normalized concentration of particle type p at location

(i, j,k); σt,p denotes the impact of particle type p on t; and It denotes the indicator

function that is true if and only if location (i, j,k) is occupied by cell type t, reflecting

the simulator design assertion of exclusive occupancy of one cell type per location.

We define fε(i, j,k) = 0.

After we compute these individual fitness scores for each lattice location, we use

them to decide probabilistically what cell type each location (i, j,k) should contain

in the next time step. For each location in the lattice (i, j,k), and for each cell type

t ∈ T\{v}, let us define a neighborhood fitness function

Ft(i, j,k) =
1

N

∑
(i ′,j ′,k ′)∈neighbors

ft(i
′, j ′,k ′), (5)

where Ft(i, j,k) denotes the probability that the cell at location (i, j,k) becomes cell

type t; and N denotes the number of neighbors in the sum. Note that since (i, j,k)

may reside on an edge or corner of the lattice, the number of its immediate neighbors

is bounded from above by 8 (in 2D) and 26 (in 3D).
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2.2.6 Phase 4: reproduce probilistically

Each cell’s immediate neighbors give a distribution from which to draw the target

cell type. Let S(i, j,k) =
∑

t∈T\{v} Ft(i, j,k). In this scheme, if S(i, j,k) > 1, then we

normalize it to 1; and if S(i, j,k) < 1 then there is some probability that location

(i, j,k) will become empty (t = ε) in the next time step.

We accomplish this as follows. Let shrinkage factor λ = 1
S(i,j,k) . For each t ∈

T\{v}, shrink each cell type’s probability contribution: Ft(i, j,k) = λ · Ft(i, j,k). We

can represent each Ft(i, j,k) as a subinterval of the unit interval. We place them side

by side to cover the unit interval. Then we draw a random number, r, uniformly in

[0, 1]; whichever cell type’s interval r resides in determines the target cell type of

(i, j,k) for the next time step.

Note that cell type v (vessel) defaults to being neither replaceable (its fate is exempt)

nor reproductive (it casts no vote), so it is effectively neutral with respect to this

reproduction phase of the simulation. Vessels are static features of the spatiotemporal

landscape.

2.2.7 Computing and plotting statistics

Between phases 3 and 4, the simulator computes and displays a number of useful

statistics for the user. These are organized into a console style grid of plots as follows.

Since we can often get a good sense of what is happening by examining 2D slices

of our 3D world, and because rendering 3D plots is computational expensive, the

dashboard consists of mostly 2D plots, and defaults to showing 2D slices on the
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z_dim
2

plane; for a 40 x 40 x 40 simulation, for example, the 2D plots show the plane

z = 20.

On the first row, in column:

1. Spatial organization of all cell types: 2D slice, color coded

2. Time series plot of the wall clock seconds elapsed at each time step (perfor-

mance diagnostic)

On the second row, in column:

1. Spatial organization of individual fitness of cell type 1: 3D scatter plot, color

coded, intensity level denotes fitness

2. same as above for cell types 2, ..., M− 1

3. Spatial organization of individual fitness of cell type M: 3D scatter plot, color

coded, intensity level denotes fitness

4. Time series plot of each cell type’s population at each time step, color coded

On the third row, in column:

1. Spatial organization of individual fitness of cell type 1: 2D slice, color coded,

intensity level denotes fitness

2. same as above for cell types 2, ..., M− 1

3. Spatial organization of individual fitness of cell type M: 2D slice, color coded,

intensity level denotes fitness

4. Time series plot of each cell type’s mean individual fitness (± standard devia-

tion) at each time step, color coded
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On the fourth row, in column:

1. Spatial organization of neighborhood fitness of cell type 1: 2D slice, color coded,

intensity level denotes fitness

2. same as above for cell types 2, ..., M− 1

3. Spatial organization of neighborhood fitness of cell type M: 2D slice, color

coded, intensity level denotes fitness

4. Time series plot of each cell type’s mean neighborhood fitness (± standard

deviation) at each time step, color coded

On the fifth row, in column:

1. Time series plot of cell type 1’s x,y, z extents, color coded

2. same as above for cell types 2, ..., M− 1

3. Time series plot of cell type M’s x,y, z extents, color coded

4. Time series plot of each cell type’s whole-image Euler-Poincare characteristic

(see Chapter 3) at each time step, color coded

On the sixth row, in column:

1. Particle type 1 concentration: 2D slice, mesh plot

2. same as above for particle types 2, ..., N− 1

3. Particle type N concentration: 2D slice, mesh plot

Figure 7 and Figure 8 show these as they appear in the simulator console for 2D

and 3D simulations, respectively.
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Figure 7: Simulator console displaying an evolving necrotic core in a 40 x 40 lattice. The
simulation consists of four cell types—empty, viable, hypoxic, and necrotic—and one
particle type, O2. In row 1, column 1, the cell population at this point in the simu-
lation consists of all cell types. In rows 2-5, columns 1-3, all cell types except empty
have fitness and other spatial statistics reported. In row 6, the concentration of O2

is reported. In column 4, rows 2-5, aggregate cell type statistics are reported in time
series.
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Figure 8: Simulator console displaying evolving regions of stable hypoxia with many vessels
in a 40 x 40 x 40 lattice. The simulation consists of five cell types—vessel (white),
empty, viable, hypoxic, and necrotic—and one particle type, O2. In row 1, column 1,
the cell population at this point in the simulation consists of hypoxic and necrotic
cells. In rows 2-5, columns 1-3, all cell types except vessel and empty have fitness
and other spatial statistics reported. In row 6, the concentration of O2 is reported.
In column 4, rows 2-5, aggregate cell type statistics are reported in time series.
Components of the console displaying 2D plots show the plane z = 20.
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2.2.8 Code

The simulator was coded in Matlab. The complete code listing is given in Appendix B.

It depends on three modules: Colormap and Colorbar Utilities2 (to stabilize col-

ormaps in multi-plot figures), freezeColors/unfreezeColors3 (to stabilize colorbars

in multi-plot figures), and Geometric Measures in 2D/3D Images4 (for computing

Minkowski functionals and the Euler-Poincaré characteristic—see Chapter 3).

2.3 results & discussion

A large set of simulation results and related discussions are listed in Appendix A.

2.4 conclusions & future work

2.4.1 Conclusions

2.4.1.1 Our contributions

We have created a spatially-resolved, mixed-population simulation which is minimal,

fast, extensible, and adaptable. First, we can support any number of cell types and

any number of particle types (each with its own diffusion rate). Second, each cell type

has default behaviors, as before, and conditional behaviors, which can implement

2 http://www.mathworks.com/matlabcentral/fileexchange/24371-colormap-and-
colorbar-utilities-sep-2009

3 http://www.mathworks.com/matlabcentral/fileexchange/7943-freezecolors-
unfreezecolors

4 http://www.mathworks.com/matlabcentral/fileexchange/33690-geometric-
measures-in-2d3d-images
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phenotypical adaptations and mutations, and state machines composed of two or

more cell types. Third, initial, and upper- and lower-bounded basal concentrations

can be set for each particle type. Fourth, each cell type can be replaceable or not,

and reproductive or not. Fifth, initial lattice occupation can be delayed to establish

complex diffusion gradients to form prior to simulation.

2.4.1.2 Our findings

Regarding the simulation, we find that with a few simple ingredients—space; distinct

particle types with their own diffusion rates; distinct cell types with default consump-

tion and release profiles; and conditional logic to implement cell-type-specific local

adaptation—we can capture a number of interesting features and phenomena. First,

in Section A.3, we observe sustained coexistence of two populations; one is dominant

but does not drive the other to extinction. Second, in Section A.6, we observe emer-

gent spatial self-organization among hypoxic and aerobic cells into a stable striation

pattern (without conditional logic), followed by population size rebalancing. Third,

in Section A.7, we are able to implement a functioning system of autocrine and re-

ciprocal paracrine signaling. Fourth, in Section A.9 and Section A.12, we observe

emergent 2D and 3D necrotic cores, respectively. Fifth, in Section A.10, Section A.11,

Section A.13, and Section A.14, we observe the emergent formation of local regions

of spatially and numerically stable viable-hypoxic cell populations that are concentri-

cally oriented, in 2D and 3D, over different vascular densities. In terms of relative

orientation, composition, and dimensions, these simulated formations are similar to

what we observe in the anti-pimonidazole stain images. This is especially true where

the randomized vasculature is more dense, thereby breaking diffusion symmetries

and giving rise to more realistic viable-hypoxic agglomerations.
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Regarding the biology of hypoxia, in Section A.10, Section A.11, Section A.13, and

Section A.14, we find there is an instability in the viable-hypoxic cell population bal-

ance. Either over-oxygenation eventually converts all hypoxic cells to viable cells, or

under-oxygenation does the reverse and then eventually these hypoxic cells become

necrotic cells. The oxygenation balance derives from three rates related to O2: vessel

release rate, the local population’s average consumption rate, and the diffusion rate.

There seem to be two possibilities: (1) the histology shows a delicate balance that

is stable, and therefore in evidence everywhere; or (2) it is a transient phenomenon,

and our histology happens to have caught one early stage. But which is it? In other

words, what is the relationship between tumor age and average intra-tumor hypoxia?

We know tumor age correlates positively with degree of vasculature, and therefore

density of oxygenation, so we can perform experiments to address this question.

2.4.2 Future work

2.4.2.1 To interface

With respect to the overarching aims of this dissertation, once we have a stable charac-

terization of hypoxia in terms of spatiotemporal features, either as a spatiotemporal

logical proposition or as a learned similarity score function, then we must implement

feature measurers correspond to each proposition feature predicate, or to each score

function feature, respectively. These measurers will perform live measurements on

the evolving simulator data structures and report their Boolean or numerical results

to a live integrator/detector function that logically or functionally relates them, re-

spectively. In the case of the spatiotemporal logical proposition, upon an integrated

truth value, the simulation will terminate and return true; otherwise it will run to
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the end and return false. In the case of the similarity score function, the integrator’s

high water mark will be maintained throughout the course of the entire simulation,

then returned as a numerical value in [0,1]. We assume these modules would be

embedded in the simulator for fast execution.

One likely set of feature measurers, related to 2D and 3D Minkowski functionals,

including the Euler-Poincaré characteristic, is already implemented [93] as the im-

Minkowski Matlab library. Once specified, the remaining feature measurers, so far as

they could not be trivially obtained by direct interrogation into the simulator’s data

structures, would require implementation.

Aside from this, we would need to modify the simulator’s functional interface to

accept a vector of arguments that codify initial condition parameters, and default and

conditional operational parameters.

2.4.2.2 To extend and enhance

We consider three extensions to our conditional logic handling that would enhance

the simulator.

First, implement a trigger-true temporal predicate. For convenience, let us illustrate

using an English language example: “If a viable cell’s local concentration of oxygen

is less than 0.05 for more than 15 clock ticks, then jump to hypoxic.” In this example,

each viable cell would have a local clock associated with each trigger set, including

one for “local concentration of oxygen is less than 0.05”. If the local concentration

were to become less than 0.05, then that clock would begin running, and would run

so long as the local concentration of oxygen stayed less than 0.05. If that clock reaches

15 ticks, then that viable cell would become hypoxic; otherwise, if before that local

clock were to reach 15 clock ticks, the local concentration of oxygen were to become
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greater than 0.05, then that clock would reset and become inactive. Modeling dura-

tion of certain local conditions, like oxygenation, would enable affected cells to adapt

their behavior according to whether pO2 levels exhibit “chronic,” vessel-dominant,

radially-distributed hypoxia, or “intermittent,” periodic, fluctuating hypoxia, as dis-

cussed by Cárdenas-Navia, et al. [20].

Second, implement a cell-age temporal predicate. For convenience, let us illustrate

using an English language example: “If a viable cell’s local concentration of oxygen is

less than 0.05 and the affected cell is more than 100 ticks old, then jump to hypoxic.”

At birth, each cell’s local age clock would initialize to zero, then advance along with

the global simulator clock. In this example, if the local concentration of oxygen were

to become less than 0.05, then that cell’s local age clock would be consulted to evalu-

ate the cell-age predicate. If it too is true, then that viable cell would become hypoxic.

Modeling local adaptations as a function of cell-age, like sensitivity to certain gradi-

ents, may capture some significant features related to the emergence of hypoxia.

Both of these temporal predicates depend on cell’s having a unique identity, which

our simulator does not use. So we would have to implement this too.

Third, implement probabilistic actions. For convenience, let us illustrate using an

English language example: “If a viable cell’s local concentration of oxygen is less than

0.05, then jump to hypoxic with a probability of 0.6.” Or “...then jump to hypoxic by

drawing from a Beta distribution, parameterized by....” Implementing this is trivial

and would immediately give the simulator an added dimension of stochasticity, to

better model natural degrees of variance in a cell population.

Another such dimension is easy to add. Instead of representing each cell type’s

default parameters as constants, we could represent them as, say, mean-variance pairs.

This way, each newly created cell of that type would draw its parameter values from,
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say, Gaussian distributions. This too would better model natural degrees of variance

in a cell population.

Given the current state of the conditional logic handling, we could attempt to

crudely implement certain phenomena like angiogenesis as, say, a probabilistic jump-

ing from empty to vessel, given sufficient concentration of VEGF particles.

2.4.2.3 To explore

We would like to explore a number of research directions related to our modeling

and simulation.

First, our findings related to local, stable regions of hypoxia, namely the balance of

rates, points to the importance of vessel density in the tissue. This compels us to ex-

plore modeling neovasculature as an explicit growth process related to tumor growth.

There is a broad literature on neovasculature modeling, for example, branching and

anastomosis [13], and among the multiscale models [32]. Vessel cells should respond

to appropriate growth factor signaling from tumor cells, like VEGF signaling, and its

growth should be geometrically constrained to one-dimensional branching embed-

ded in three dimensions, oriented along these growth factor gradients. In addition,

vessel flow rates should vary. If embedded in a lattice, like our simulation, then one

need not explicitly model vessel volume, since this is abstracted away, but one can

easily vary vessel flow rates according to a statistical distribution that reflects in vivo

physiological norms in the model system.

Second, it may turn out that a lattice-based simulation is too limited to capture

properties related to cell crowdedness, which is arguably essential for modeling

density-derived control of tumor cell population growth, and emergent geometric

and spatial organization. It may also have significance for modeling emerging local,
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stable regions of hypoxia. Without an explicit notion of crowdedness, one cannot

correctly model contact inhibition or anoikis, for example, and how such mecha-

nisms constrain growth rates and spatial patterns. While one could use our condi-

tional logic apparatus to exploit an as yet unimplemented local-density predicate to

crudely model constrained growth, Plank, et al. argue that since lattice-based meth-

ods implicitly assume uniform density, among other limitations, properly modeling

crowdedness requires a lattice-free setting [119].

Third, we may wish to explicitly model individual cell migration. Our simulation

presently uses a simple statistical mechanism to implement fitness-based local cell

type regional takeover. As mentioned earlier, this implies that individual cells do not

possess a unique identity. While distinct cell types can respond to local concentra-

tions, and locally adapt to their environment using their conditional logic, they do so

in a manner that ignores their individuality. In other words, our world is lattice-state-

centric rather than cell-identity-centric. In the end, this may be too abstract a setting

to properly model individual cell migration in a way that can be configured by its

own set of parameters. This area too has a broad literature, for example [63, 73, 76].

The relationship between cell migration and emerging local, stable regions of hypoxia

is presently unclear to us, but may well prove worth exploring.

Fourth, in a longer time scale, evolutionary dynamics with respect to phenotypical

strategies, for example, complex, mixed metabolic strategies, may become important

to model. As such, we would like to investigate modeling a mixed metabolic popula-

tion based on the principles of evolutionary game theory [134, 135, 6, 5, 4, 114]. As

we discussed at length beginning in Section 2.1.2.5, there is a broad literature on can-

cer game theory modeling, but little it seems has been done in the area of metabolic

mixed populations. Another related direction is to model emergent signaling conven-
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tions and cellular coordination and teamwork based on signaling games [95, 133].

Two particularly interesting dimensions of this are meaning and credibility in “cheap-

talk” games, and the emergence of “neologism-proof” signaling conventions that

are robust to “deceptive” signaling [40]. How does a tumor cell population foil this

mechanism, to move the game-playing dynamics to a novel, malignant Bayesian equi-

librium? As with cell migration, the relationship between game theoretic strategies

for coordination, and emerging local, stable regions of hypoxia is presently unclear to

us, but may well prove worth exploring. (Bud Mishra and Andreas Witzel, personal

communications, 2011-2013.)

To balance matters, let us conclude with an appreciation for parsimony. Although

each of these four areas of exploration merit consideration, in the scope and context

of modeling emerging local, stable regions of hypoxia, our present minimal model al-

ready captures some of the salient spatial and dynamic features of the phenomenon.
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3
H I S T O L O G I C A L I M A G E A N A LY S I S A N D C H A R A C T E R I Z AT I O N

O F H Y P O X I A

3.1 introduction

3.1.1 Problem statement

Derive a spatiotemporal characterization of hypoxia in human tumor tissue from a

set of histological images.

3.1.2 Background & literature review

3.1.2.1 Biological experiments & histological images

experimental protocol Our study concerns an experiment that demonstrates

hypoxia arising in human colon cancer1. In this experiment, 2× 106 human colon can-

cer cells were injected into both flanks of nude mice. When the tumor volume reached

∼1500 mm3 (∼ 4 weeks post-injection), pimonidazole was administered via intraperi-

toneal injection. Ninety minutes after pimonidazole administration mice were eutha-

nized, the tumors were excised and immediately fixed in formalin. Slides were then

1 I would like to gratefully acknowledge the experimental work performed by Elda
Grabocka, a postdoctoral fellow in the laboratory of Dafna Bar-Sagi, in her ongo-
ing research into the relationship between hypoxia and the formation of stress gran-
ules. This experimental work provided the tumor section slides—stained by H&E,
trichrome, and anti-pimonidazole—from which we took the images that our study
depends on for characterization of hypoxia.
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prepared from sections 10 μm apart, alternating between H&E and anti-pimonidazole

stains.

h&e staining Hematoxylin and eosin stain (or “H&E stain”) is a common

staining method in histology. The staining method applies hemalum, which colors

cell nuclei blue; it also colors blue some calcified material. The method then coun-

terstains with an aqueous or alcoholic solution of eosin Y, which colors non-nuclear,

eosinophilic structures various shades of red, pink, and orange. In our study, we use

H&E stains of the tumor tissue for the primary purpose of locating blood vessels and

for discriminating collagen. Blood vessels appear within the boundary of the tissue

as open lumens (white) populated with several to many red blood cells (small, bright

pink spheroids). Collagen deposits appear as continuous structures (light pink) that

infuse the tumor lesions and usually do not extend into the necrotic tissue (lightest

pink, with interstitial spacing and much smaller, unenclosed nuclei). See Figure 9 for

an example H&E stain image of one of our study’s canonical tumor sections.
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Figure 9: An H&E stain of one of our study’s canonical tumor sections.

trichrome staining Masson’s trichrome is a three-color staining protocol

used in histology. The usual formulation stains keratin and muscle fibers red, col-

lagen and bone either blue or green, cytoplasm wither light red or pink, and cell

nuclei some gradation of dark brown to black. In our study, we use the trichrome

stain to verify the presence of collagen in the tumor tissue. In Figure 10, for exam-

ple, we see three lumen filled with clusters of red blood cells, indicating a transverse

sectioning of three blood vessels, and a tumor lesion completely suffused with colla-

gen. This produces a common complication in our study for two reasons that we can
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see here: it spatially partitions the lesion, and it may compartmentalize (in 3D) and

thereby affect oxygenation within the lesion.

Figure 10: A trichrome stain of one of our study’s tumor sections.

anti-pimonidazole staining Anti-pimonidazole staining is an immunohis-

tochemical stain protocol used to detect and locate live cells undergoing hypoxia

[144, 126, 89]. In plasma, pimonidazole has a half-life of 25 minutes. It distributes to

all tissues following injection, but it forms stable covalent adducts with thiol groups

in proteins, peptides, and amino acids, only in those cells that have an oxygen concen-

tration less than 14 micromolar (equivalent to a partial pressure pO2 = 10 mm Hg at

37 C). In the immunohistochemistry, anti-pimonidazole binds to these adducts allow-
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ing their detection. In addition to hypoxic regions in tumors, normal tissues of certain

organs such as liver, kidney, and skin possess cells at or below pO2 of 10 mm Hg;

these normal tissues, and only these, will bind pimonidazole. In Figure 11, we see an

anti-pimonidazole stain of one of our study’s canonical tumor sections. Hypoxic cells

stain brown by degree of hypoxia. Notice the blood vessels are much more difficult

to locate, though it is still possible. In most cases our procedure to locate vessels is to

first manually register the H&E and anti-pimonidazole images (sections of the tumor

taken 10 μm apart); second, locate the vessels on the H& stain; then finally use this

position on the anti-pimonidazole to approximate the vessel position, or to simply

guide a more detailed examination of the anti-pimonidazole image until the vessel

can be positively identified. As mentioned earlier, collagen complicates our study

structurally and colorimetrically, which can be seen in the figure: collagen is difficult

to distinguish from the necrotic tissue that surrounds the lesions. One consequence is

that purely intensity-level-based methods of image segmentation will fail to account

for the full area of any given lesion suffused with collagen, since it will classify colla-

gen as necrotic tissue and thereby over-partition the lesion into sub-lesions and then

downstream analysis will mischaracterize the larger length-scale pattern of oxygen

diffusion throughout the larger lesion.

63



3.1 introduction

Figure 11: An anti-pimonidazole stain of one of our study’s canonical tumor sections.

These types of biological experiments yield histological images of the kind shown

above. We are chiefly interested in trying to characterize hypoxia from the anti-

pimonidazole stain images. To our knowledge, no methods exist that can do this

analysis using histology images like ours.

3.1.2.2 One relevant study that uses time-series data

One recent study, by Cárdenas-Navia, et al. [20] uses a novel generalization of a

live imaging modality to study hypoxia in rat tumor tissue in vivo. They are moti-

vated to draw attention to an often-neglected aspect of hypoxia study, namely the

pervasive presence of fluctuating oxygenation in tumors. They distinguish between
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“intermittent hypoxia,” governed by this ambient fluctuation, and “chronic hypoxia,”

governed by a vessel-dominant oxygenation dynamics. They claim that strategies for

mitigating the effects of hypoxic tumor cells were developed under the assumption

that chronically hypoxic tumor cells are the central cause of treatment resistance, and

so set out to demonstrate how this other paradigm of “intermittent hypoxia” might

also explain treatment resistance.

In their study, they used phosphorescent lifetime imaging (PLI) to measure fluctu-

ations in vascular pO2 in rat 9L gliomas, fibrosarcomas, and R3230 mammary adeno-

carcinomas. These were grown in dorsal skin-fold window chambers (n=6 for each

tumor type), and then imaged every 2.5 minutes for a duration of 60 to 90 minutes.

They made a number of important observations. First, continual fluctuation in tumor

oxygenation is a prevalent characteristic of these three tumor lines. Second, results

in continuous reoxygenation events throughout the tumor. Third, vascular pO2 maps

show significant spatial heterogeneity at each time point, and between time points.

Fourth, tumor type affects spatial distribution of oxygen. Fifth, the fluctuations in

oxygenation occur with a common slow periodicity (10s of minutes) within and be-

tween tumors.

They discuss evidence to support how intermittent hypoxia alters stromal and

tumor cells, and that it has important molecular effects. Lastly, they discuss how

the spatial heterogeneity in temporal oxygen fluctuations has important implications

for optimizing traditional therapies like radiotherapy. If we could visualize areas of

fluctuating hypoxia, then high doses of radiation could be delivered to hypoxic areas

at a time during which pO2 values in that area were at the peak of their fluctuations.

For this aim, we need further studies to examine spatiotemporal periodicity of tumor

oxygenation at timescales relevant to treatment scheduling, like days.
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Of course, we are interested in characterizing “chronic hypoxia” situations where

there is a steady-state gradient of oxygen from a source vessel, since their stability

renders them far more amenable to the length and time scales of our histological

evidence. This situation does not preclude our interest in the more spatiotemporally

dynamic processes elucidated by Cárdenas-Navia, et al.. In fact, as a future endeavor

(but not in the scope of this study), we would like to find evidence of reoxygenation

patterns in histology. While not taken in time series, histology yields far more struc-

tural and state information in the biology than the highly abstracted view that PLI

provides per unit time, which is essentially only pO2 values in space. And it would

make their work more relevant to human tumors.

We appreciate the authors’ position that previous characterization of hypoxia as

perfusion-limited or diffusion-limited are the extreme cases of O2-delivery-dominant

or O2-metabolism-dominant areas in tumors, respectively, and that most tumor tissue

does not distinctly fall into either category; rather, the local pO2 is heavily influenced

by both. After all, the phenomenon of hypoxia as it relates to the heterogeneous

metabolic profiles of the tumor population is central to our study. While it may be

true that previous characterization of tumor hypoxia as being primarily diffusion-

limited does not accurately portray the tumor microenvironment, it is nonetheless a

clear phenomenon for which we find evidence in our study, and so we see value in

our attempt to seek a spatiotemporal characterization of this “chronic hypoxia.”

We also appreciate the attention the authors give to spatial heterogeneity in their

analysis. In particular, their use of Moran’s I statistic, to express the degree of spatial

autocorrelation at each time frame, appears to be a powerful technique of immediate

relevance to our study. As a matter of future work, we intend to explore this technique

further.
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3.1.3 Our materials & methods

Our approach consists in extracting qualitative and quantitative features from the his-

tology images, namely the anti-pimonidazol stains. We classify these as: (1) features

that derive from segmenting the image into the three tissue types depicted: viable

tumor cells, hypoxic tumor cells, and necrotic tumor cells; (2) features related to the

intra-lesion hypoxia gradient, as measured from radial distance away from the near-

est vessel; (3) features that derive from multiscale analysis; and (4) features that relate

to qualitative generalities about bounded and nested structure.

Once we have a set of features, we proceed in two separate but related directions.

First, we attempt to construct a logical proposition to describe hypoxia in space and

time using an extension of Bounded Linear Temporal Logic (BLTL), whose primitives

are image feature predicates. This is a human-driven process, following from human

learning and generalization. Second, we attempt to construct a linear regression func-

tion that learns what hypoxia is in terms of estimated linear coefficients on the image

feature terms. This is a machine-driven process, kept on the rails by a combination of

false-positive and false-negative control, and feature dimensionality reduction where

possible.

3.1.4 Literature review of constituent problems

Given this parsing of our problem statement above into the constituent problems

of image feature extraction and logical/functional construction, we should mention

research in the literature that relates to them.
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3.1.4.1 Image processing

image segmentation There has been recent progress in automated tumor seg-

mentation on histological images, the best example of which is by Wang, et al. [149].

They note that existing research on immunohistochemistry quantification simplify

the measurement problem by assuming expert knowledge of tumor areas, which

can be used for manual segmentation of tumor cells. They discuss a variety of stud-

ies that explore the use of image analysis and machine vision techniques for tissue

analysis and biomarker measurement, remarking that robust automated approaches

for immunohistochemistry quantification are still under-developed. Although these

studies claim to have developed algorithms that measure the intensity and distribu-

tion of biomarkers, and do so within the architecture of the tissue samples relevant to

them, they all lack empirical validation. Wang, et al. develop a robust tumor segmen-

tation technique and test it on H&E and immunohistochemistry stain slides. Their

method is comprised of a tissue architecture extraction approach and a tumor tex-

ture learning model. The tissue architecture extraction approach uses a stain separa-

tion method and an unsupervised multistage entropy-based segmentation method,

and the tumor texture learning uses a Markov random field image segmentation

system. Their method allows fine pixel based segmentation for small tissue samples.

Their tissue domain is human lung tumors. For their purposes they define three

classes of tissue morphology: tumor, stroma, and a third catch-all category for lym-

phoid, inflammatory cells, and necrosis. They report achieving 80% and 78% accu-

racy2 on H&E and immunohistochemistry images, respectively. They do not try their

method on anti-pimonidazol stain images, which, especially in low concentrations

of anti-pimonidazol, render images that have strikingly low contrast. Nonetheless,

2 accuracy = (TP+TN)
(TP+TN+FP+FN)
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their approach seems to us a promising texture-learning-based alternative to the sim-

ple intensity-based means we use to segment high-concentration anti-pimonidazol

images. We plan to explore this approach further in future work.

spatial structure analysis

Connectedness The Euler-Poincaré characteristic (EPC), one of the Minkowski func-

tionals [107, 93, 59] , is a measure of structural connectedness (or alternatively, porous-

ness), and it has been used recently in two applications. The first concerns measuring

bone density. Rath, et al. [120] use the EPC to visualize and assess local trabecular

bone structure; and Roque, et al. [125] use the EPC to identify low bone density from

vertebral tomographic images. The second application is in classifying tumors. Hut-

terer, et al. [71] use the EPC to assign a characteristic signature curve to each AFM

image of different tumor types, then use that curve as the basis of a classification

method. We are intrigued by the use of characteristic EPC curves, and consider this

strategy for learning our image features.

3.1.4.2 Spatiotemporal logical characterization of biological phenomena

statistical model checking and pbltl characterization A number

of recent computational studies [77, 162, 54, 55] have employed statistical model

checking algorithms to verify spatiotemporal logical propositions in biological sys-

tems. They use Probabilistic Bounded Linear Temporal Logic (PBLTL) to character-

ize phenomena of interest in: a fibroblast growth factor signaling model, circadian

rhythm, yeast heterotrimeric G protein cycle control, and the HMGB1 signaling path-

way in cancer.
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model checking and lssl characterization One study, by Grosu, et al.

[58] uses model checking with Linear Spatial-Superposition Logic (LSSL) to tackle

the problem of learning and detecting emergent behavior in networks of cardiac

myocytes. (See our discussion in Section 1.5.) We are encouraged by the success of

their approach.

3.1.4.3 Linear regression functional characterization

In earlier work [139], in a different image processing domain, we used a linear regres-

sion learning method that we have adapted for our application here.

3.2 materials & methods

3.2.1 Image analysis

3.2.1.1 Normalizing image data

For our initial examination of anti-pimonidazole images, the only selection criterion

we applied was to keep to the interior of the tumor, away from its extremities. Since

these are xenographed tumors, there are potentially many confounding factors at

work near the interface between human tumor and mouse stroma. This is a baseline

criterion, applied to all of the images we investigate, regardless of any further strati-

fication. This gave us a set of 20 high-concentration anti-pimonidazole images, taken

at 20× magnification, of various regions of the tumor interior. But as we became in-

terested in the role vessels play in oxygenation of the tissue, we decided to further

stratify the data, and select just those images whose 10× fields of view are �90%

filled with non-necrotic cancer cells, and contain at least one blood vessel. This strat-
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ification gave us 8 such high-concentration anti-pimonidazole images, each taken at

10× and 20× magnification, having corresponding registered H&E images from a

section 10 μm away.

3.2.1.2 Image preprocessing

We shall illustrate image preprocessing and further analysis using two “canonical”

images as running examples: Figure 11 and Figure 17 (top). We do this for presenta-

tional convenience; our intuitions were developed examining many images, and our

methods are applied to all specified images. The first step in our image preprocessing

algorithm is to convert the RGB histology image into an 8-bit grayscale image. See

Figure 12.
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Figure 12: Our canonical image as an 8-bit grayscale image.

rgb to grayscale

smoothing Then we apply Gaussian smoothing (using a 5 × 5 mask and stan-

dard deviation of 5.0) iteratively until the high frequency structural information is

averaged away (say 100 iterations). See Figure 13. We have used no formal criteria

for establishing these parameters, assuming that a consistent protocol for smooth-

ing all images prior to downstream processing is more important than the degree of

smoothness. We will address this lack of rigor in future work.
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Figure 13: Our canonical image after iterative smoothing.

3.2.1.3 Toward automated image segmentation

mesh and contour plots When image intensity is viewed as a mesh plot, it

is apparent that there are three distinct planes of intensity in the image: necrotic tissue

above, hypoxia tissue in the deepest recesses along the outer contour of the lesion,

and rising up from that, but not to the height of the necrotic tissue, is the viable (non-

hypoxic) tissue. Note the backbone of collagen that runs along the middle of the

lesion, and how its intensity levels are frequently indistinguishable from those of the

necrotic tissue. More information is given in the contour plot, where the proximity of

equipotential curves conveys the steepness of the gradients in intensity. See Figure 14.
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Figure 14: Our smoothed canonical image plotted as a mesh (top) and a contour (bottom).

74



3.2 materials & methods

histogram analysis Despite what our eyes tell us in the mesh and contour

plots, when we examine all of the pixels of our canonical image, we see a clear

bimodal distribution in the intensity histogram. Yet, when we select a sub-image

where we see roughly equal proportions of the three distinct tissue types, a trimodal

distribution appears in the intensity histogram. See Figure 15.

Figure 15: When we examine all of the pixels of our smoothed canonical image (upper left),
we see a clear bimodal distribution in the intensity histogram (upper right). Yet,
when we select a sub-image where we see roughly equal proportions of the three
distinct tissue types (lower left), a trimodal distribution appears in the intensity
histogram (lower right).

Using this distribution as a guideline, we proceed to segment our canonical image

into three non-overlapping intensity intervals: [0,156] for hypoxic, [157,175] for viable,

and [176-255] for necrotic tissue, depicted as red-colored pixels in the top, middle,
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and bottom of Figure 16, respectively. Naturally, because sharp thresholds truncate

neighboring distributions, false-positive and false-negative cases emerge from this

crude approach. In the viable interval we see false-positive outer contours around

the hypoxic tissue, and the false-negative inner backbone areas where there are colla-

gen deposits; and in the necrotic interval we see false positive areas where collagen

forms an inner backbone that partitions the viable tissue. Since our canonical im-

age is taken from a set of high-concentration anti-pimonidazole images, where the

viable-hypoxic distinction is visually and numerically easier to make, we expect this

intensity interval partition approach to perform worse on the low concentration anti-

pimonidazole images, which it does. Therefore, we cannot recommend it as a general

method, despite seemingly high accuracy in some extreme cases of high contrast

between the three tissue types’ average intensity levels. It follows then that we can-

not recommend conducting any downstream processing of segmented components if

such components were derived using this method. However, it may still be useful for

comparing gross measures of viable-like and hypoxic-like cell areas within a whole

image; these might provide a characteristic ratio.
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Figure 16: Tissue types by manual segmentation of our smoothed canonical image. Hypoxic
tissue, as defined by the intensity interval [0,156] (top). Viable tissue, as defined
by the intensity interval [157,175] (middle). Note the false-positive outer contours
around the hypoxic tissue, and the false-negative inner backbone areas where there
are collagen deposits. Necrotic tissue, as defined by the intensity interval [176,255]
(bottom). Note the false positive areas where collagen forms an inner backbone
that partitions the viable tissue.
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spatial partitioning Next we consider spatial partitioning, where continu-

ous boundaries that separate tissue types are introduced into the image. This requires

some degree of familiarity to manually parse these histology images, and so lacks the

scalability in the number of images we require for statistical analysis. In Figure 17 we

have another canonical anti-pimonidazole image, its manual partitioning, and its la-

beled partitions. Segmentation by partitioning reveals containment properties of the

different regions and leads us to infer which tissue structures are nestable, a subject

we shall return to later.
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Figure 17: Tissue types by manual spatial partitioning. Another (unsmoothed) canonical anti-
pimonidazole image (top), its manually partitioning (middle), and its labeled par-
titions (bottom). Key: V = viable, N = necrotic; unlabeled, brown regions are hy-
poxic.
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3.2.1.4 Toward characterizing gradients

One of the most salient and consistent features of the anti-pimonidazole images un-

der investigation is the presence of a gradient in the brown stain for hypoxia. In any

given lesion, stain density is maximal at the outermost contour of the lesion, abutting

necrotic tissue that surrounds it, and then diminishes steadily as a function of dis-

tance away from the extremity, toward the center (or central 1D spine) of the lesion.

Equivalently, stain density decreases steadily as a function of radial distance away

from the center (or orthogonally from the central 1D spine). The central area of a

lesion is usually marked by a vessel.

intensity sample ray bundles For our gradient measurement analysis, we

designed an algorithm to perform radial intensity level sampling, along rays that

extend from a given lesion center. One specifies three parameters: a center, (xc,yc),

usually in the centroid of a blood vessel; n, the number of equal-angle-spaced rays

that will sample the circle’s area; and m, the number of equal-angle-defined “bun-

dles” (sectors) into which the rays will be considered for statistical analysis. For ex-

ample, if n = 80, then a sample ray will be extended every π
40

radians, and if m = 1,

then the rays that fall within 2π radians (all of the rays) will be considered for that

bundle’s statistical analysis. The image is first smoothed, as before. For a given ray,

intensity level is sampled radially, from the inside out, until it encounters the edge

of the image. One may specify (as optional parameters) the distance between sam-

ples along the ray, ds in pixels (1 by default), and the square neighborhood radius,

rn in pixels, over which to average for that sample (0 by default since the image

is already smoothed). Once the samples have been taken along all of the rays, the

rays are “stacked” and “sliced” in the following way. Each ray is an array or inte-
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gers, whose index value (in the case of default value of ds) corresponds 1:1 to pixel

distance away form the center. So if we “stack” all of the rays, aligning their array

representations by their start index, we will have a measurement matrix, M, that has

m rows and c columns, where c = lmax

ds
, and lmax =

√
x_dim2 + y_dim2, the length

of the hypotenuse of the triangle whose right angle sides are the x and y dimensions

of the image being sampled. If ds = 1 (by default), then c = lmax. To see why c takes

this value, consider the following extreme case we must be prepared to handle. If we

place a center in one corner of the image, then a ray may extend to the opposite cor-

ner, requiring lmax array locations for its measurements. Given M, we now compute

mean, median, and standard deviation along column “slices” of M. This results in

�mean, �median, and �std vectors, whose array representation indices correspond to ra-

dial pixel distance away from the center. Since rays have different lengths—they each

encounter the edge of the image in a different place, at a different distance from the

center from the other rays—they each populate a row of M to a different extent, up

to a certain column index; the remaining columns are populated with ∞ so that the

part of our algorithm computing �mean, �median, and �std knows when to drop this

ray from the computation. Now we compute the radius of the measurement area,

rm, in the following way. One may specify (as an optional parameter) a threshold

length, lt (defaults to 1000 pixels), over which to locate the global minimum (darkest

point) in �median. That is, rm = min1�i�lt {
�median(i)}. Our algorithm now creates

three plots of the data, where the x-axis denotes distance from the center, and the

y-axis denotes intensity level. The first shows every ray measurement (various col-

ors), upon which �mean (blue) and �median (red) are overlaid; its title gives rm. The

second shows �mean (blue) ± �std (gray), overlaid with segmented least squares fits

to �mean (black); its title gives the length (l), slope (s), and least squares error (e)
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for each fitted segment. The third shows �median (red) ± �std (gray), overlaid with

segmented least squares fits to �median (black); its title gives the length (l), slope (s),

and least squares error (e) for each fitted segment. The segmented least square fits

are given by a dynamic programming algorithm [86], using a cost parameter C = 200.

We should note now that this entire process is bounded by, and repeated for, each

bundle. So for example, if m = 4, then �mean, �median, �std, and rm are computed,

and plots are created, for those rays that fall within each successive π
2

of the circle.

Figure 18 shows the circles (red) defined by the rm found for each of the three centers

specified in our canonical image (n = 80,m = 1), corresponding to vessel locations in

the registered H&E image. The intensity analysis for the three circles’ areas is given

in Figure 19, Figure 20, and Figure 21. Figure 22 shows the sectors (red) defined by

the rm found for each bundle of each of the three centers specified in our canoni-

cal image (n = 80,m = 8), corresponding to vessel locations in the registered H&E

image. We do not show the corresponding 24 intensity analysis figures.

For our implementation, see the code listing in Section C.1
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Figure 18: Circles (red) defined by the rm found by our algorithm for each of the three centers
we specifed, corresponding to vessal locations in the registered H&E image.
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Figure 19: Intensity level analysis produced by our algorithm for center 1.
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Figure 20: Intensity level analysis produced by our algorithm for center 2.
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Figure 21: Intensity level analysis produced by our algorithm for center 3.
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Figure 22: Circle sectors (red) defined by the rm found by our algorithm for each bundle
of each of the three centers we specifed, corresponding to vessal locations in the
registered H&E image.

normalizing image data Our first examination of high-concentration anti-

pimonidazole images using this method was inconclusive. While it provided evi-

dence for the presence of a gradient following the description above, the slopes

of the relevant segments in the linear fit to the mean and median intensity mea-

surements contained too much variation for a meaningful measurement of gradient

steepness. It is common practice in many biology experiments to stain tissues using

at least two concentration levels. The higher (or highest) concentration functions as a

binary test for effectiveness of the stain. Is the phenomenon captured? Did it stain cor-
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rectly? Provided that it did, follow up staining is conducted at lower concentrations.

In the case of our data set, two concentrations, high and low, were used. Since the

high-concentration images might contain excessive contrast, saturating the regions of

hypoxia—beneficial for intensity-level-based image segmentation—this may swamp

the more subtle gradient signal. We realized that we should attempt the same anal-

ysis on a corpus of low-concentration anti-pimonidazole images. For the purposes

of measuring gradients, we sought to stratify the data differently than before, and

select low-concentration anti-pimonidazole images, taken at 10times magnification,

that contain one or more complete lesions, each containing one or more blood ves-

sels. This gave us 23 such anti-pimonidazole images, each taken at 10× magnification,

having corresponding registered H&E images from a section 10 μm away.

3.2.1.5 Toward a hierarchical or multiscale structural analysis

quad-tree recursive image decomposition To examine the property of

intensity variance at different scales in the image, we employ a quad-tree algorithm,

adapting it to work with any aspect ratio, not just square images. This works in

the following way. For the given rectangle R, consider the set of pixels, P, within it,

and the corresponding set of intensity values, IP. If the CV(IP) =
σ(IP)
μ(IP)

> 0.02 then

decompose R into four equal-size rectangles, R1,R2,R3,R4, and perform the quad-tree

algorithm on R1,R2,R3,R4. This method quickly locates those regions of the image

that contain a sufficiently high noise-to-signal ratio. Figure 23 shows the quad-tree

decomposition of our canonical image.

For our implementation, see the code listing in Section C.2
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Figure 23: A quad-tree decomposition of our canonical image, where the criterion for decom-
position of a given frame is a sufficiently high variation among the frame’s pixels’
intensity values.

3.2.1.6 Toward a spatiotemporal grammar of nested structures

identifying regions {v, h , n} As can be seen in Figure 17 (bottom), we can

(at least manually for now), segment and unambiguously identify each tissue region

in our anti-pimonidazole images: V for viable, H for hypoxic, and N for necrotic

tumor tissue. Once we have performed this step on our full set of images, certain

qualitative patterns emerge.
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consistent observations in image data We observe the following gener-

alities:

• Temporal:

– 1. N can expand but not contract.

• Spatial:

– 2. H always precedes N, along its outer contour.

– 3. H gradient increases in the direction V → N.

– 4. At any given time (in any given image), select a point in the image and

proceed in a single direction away from the point; only the following two

sequences will be observed

∗ a. V → H (ascending) → N → H (descending) → V

∗ b. V → H (ascending, descending) → V

– 5. var(width(H)) << var(width({N,V})

axioms for the regions These observations lead us to formulate the follow-

ing axioms.

• A1. invalid-neighbors({V,N})

– H must separate {V,N}

• A2. reg(V) → reg(H) → reg(N)

– regional monotonicity

– N is absorbing state
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valid spatiotemporal grammatical transformation rules From A1

and A2, we can derive the following valid spatiotemporal grammatical transforma-

tion rules.

1. V → V H V (H origination in V) by A2

2. H → H N H (N origination in H) by A2

3. H V H → H (V elimination in H) by A2

4. N H N → N (H elimination in N) by A2

invalid spatiotemporal grammatical transformation rules From

A1 and A2, we can derive the following invalid spatiotemporal grammatical transfor-

mation rules.

1. H → H V H (V origination in H) by A2

2. N → N H N (H origination in N) by A2

3. N → N V N (V origination in N) by A2

4. V → V N V (N origination in V) by A1

5. H N H → H (N elimination in H) by A2

6. V H V → V (H elimination in V) by A2

7. N V N → N (V elimination in N) by A1

8. V N V → V (N elimination in V) by A1
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3.2.2 Spatiotemporal logical characterization

3.2.2.1 What does hypoxia look like logically?

At a high level, we have defined above some quantitative and qualitative image fea-

tures that we would now like to incorporate into a modal logical proposition about

what hypoxia is in space and time. We will apply thresholds to the quantitative fea-

tures to render them as predicates in our proposition. We will first use these propo-

sitions with modal operators in space: Si = eventually/always X happens in space.

Then we will use these spatial modal expressions with modal operators in time: Tj

= eventually/always Si happens in time. This is the way we will build up our final

proposition.

3.2.2.2 Extending Probabilistic Bounded Linear Temporal Logic

The logic we develop here is an adaptation of Probabilistic Bounded Linear Temporal

Logic (PBLTL) [77] that accommodates the three dimensions of space as well as time.

For a stochastic model simulation S, let the set of state variables SV be a finite

set of real-valued variables. A Boolean predicate over SV is a constraint of the form

u ∼ v, where u ∈ SV , ∼∈ {�,�,=}, and v ∈ R. A BLTL property is built on a fi-

nite set of Boolean predicates over SV using Boolean connectives and spatiotemporal

operators. The syntax of the logic is given by the following grammar: φ ::= u ∼

v|(φ1 ∨ φ2)|(φ1 ∧ φ2)|¬φ1|(φ1U
{x1,x2,x3,t}φ2), where u ∈ SV , ∼∈ {�,�,=}, v ∈ Q,

and x1, x2, x3, t ∈ Q�0. We can define additional spatiotemporal operators such as

F{x1,x2,x3,t}ψ = TrueU{x1,x2,x3,t}ψ and G{x1,x2,x3,t}ψ = ¬F{x1,x2,x3,t}¬ψ in terms of the

bounded until U{x1,x2,x3,t}. A PBLTL formula is a one of the form P�θ(φ), where φ

is a BLTL formula and θ ∈ (0, 1). We say that S satisfies PBLTL property P�θ(φ),
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denoted by S |= P�θ(φ), if and only if the probability that an execution of S satisfies

BLTL property φ is greater than or equal to θ.

Informally, the spatiotemporal operators can be interpreted as follows in this ex-

ample:

• φ1U
x1,20φ2 means within 20 spatial units in x1, φ1 holds until φ2 holds.

• φ1U
t,20φ2 means within 20 time units, φ1 holds until φ2 holds.

• Fx1,20φ means within 20 spatial units in x1, φ holds.

• Ft,20φ means within 20 time units, φ holds.

• Gx1,20φ means for 20 spatial units in x1, φ holds.

• Gt,20φ means for 20 time units, φ holds.

Continuing to follow Jha, et al. [77], we define the semantics of our extended BLTL

with respect to executions of S. Let σ |= φ denote that an execution trace σ of S

satisfies φ. Let σ = (s0, t0), (s1, t1), ... be an execution of the simulator along states

s0, s1, ... with durations t0, t1, ... ∈ R. We denote the execution trace starting with

state i by σi. The value of the state variable x in σ at state i is denoted by V(σ, i, x).

The semantics of our extended BLTL for a trace σk starting at the kth state (k ∈ N)

is defined as follows:

• σk |= x ∼ v iff V(σ,k, x) ∼ v

• σk |= φ1 ∨φ2 iff σk |= φ1 or σk |= φ2

• σk |= φ1 ∧φ2 iff σk |= φ1 and σk |= φ2

• σk |= ¬φ iff σk |= φ does not hold
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• σk |= φ1U
x1φ2 iff ∃i ∈ N such that (1)

∑
0�l<i x1,k+l � x1, (2) σk+i |= φ2, and

(3) for each 0 � j < i,σk+j |= φ1.

• σk |= φ1U
x2φ2 iff ∃i ∈ N such that (1)

∑
0�l<i x2,k+l � x2, (2) σk+i |= φ2, and

(3) for each 0 � j < i,σk+j |= φ1.

• σk |= φ1U
x3φ2 iff ∃i ∈ N such that (1)

∑
0�l<i x3,k+l � x3, (2) σk+i |= φ2, and

(3) for each 0 � j < i,σk+j |= φ1.

• σk |= φ1U
tφ2 iff ∃i ∈ N such that (1)

∑
0�l<i tk+l � t, (2) σk+i |= φ2, and (3)

for each 0 � j < i,σk+j |= φ1.

3.2.2.3 Deriving φ

Using the extended BLTL, we derive a preliminary spatiotemporal proposition of

hypoxia in terms of the hypoxia image/simulator features discussed here.

Suppose we are in a 2D universe.

From the valid spatiotemporal grammatical transformation rules given above, we

can immediately write our first proposition term. If we hold x2 fixed and test along

x1 with respect to x1,0, then we expect to encounter tissue types in the following

order: N → H → V → H → N. Suppose we have a primitive state variable function

T : (x1, x2) → {H,V ,N} that given a coordinate in 2D returns the tissue type at
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that coordinate, namely {H,V,N}. In terms of our spatiotemporal logic, this gives the

spatial term

(T(x1, x2) = N)Ux1,xN

(T(x1, x2) = H)Ux1,xH

(T(x1, x2) = V)Ux1,xV

(T(x1, x2) = H)Ux1,xH

(T(x1, x2) = N).

(6)

Until a morphological analysis provides us with robust measures of tissue type

thickness in 2D, we shall leave xH, xV , and xN undefined. Because the valid spa-

tiotemporal grammatical transformation rules apply symmetrically, we can write the

analogous spatial term for holding x1 fixed and testing along x2 with respect to x2,0:

(T(x1, x2) = N)Ux2,xN

(T(x1, x2) = H)Ux2,xH

(T(x1, x2) = V)Ux2,xV

(T(x1, x2) = H)Ux2,xH

(T(x1, x2) = N).

(7)

In terms of our gradient feature, suppose we have a primitive state variable func-

tion ∇+ : (x1, x2,p) → (δx1
, δx2

, δρp) that given a coordinate in 2D and a particle

type p returns the point (δx1
, δx2

) adjacent to (x1, x2) that will have the highest con-

centration of p, returned as δρp
. Thus by extending x1 with respect to x1,0 and x2
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3.2 materials & methods

with respect to x2,0, along a contour iteratively specified by ∇+, once we encounter

the boundary of N → H, we ought to be able to climb the gradient of p and measure

its properties as we proceed from H → V . This gives our next spatial term in the

proposition:

(T(x1, x2) = N)U(x1,x2),(xN,xN)(T(x1, x2) = H)

∧F(x1,x2)←∇+(x1,x2),(xH+xV ,xH+xV)

(

(F(x1,x2)←∇+(x1,x2),(267+126,267+126)(∇+(x1, x2,p) = −0.06± 0.03))

U(x1,x2)←∇+(x1,x2),(xH+xV ,xH+xV)

(F(x1,x2)←∇+(x1,x2),(172+83,172+83)(∇+(x1, x2,p) = −0.21± 0.19))

),

(8)

which in plain language means “We are in necrotic tissue until we are in hypoxic

tissue, and then for some length along the contour of our gradient ascent (bounded

from above by the expected thickness of hypoxic plus necrotic regions), we track

the gradient trajectory characterized by our experimental results below, namely we

follow a gradient slope of -0.06 (within bounds) for some bounded length, until we

follow a gradient slope of -0.21 (within bounds) for some bounded length.” The gra-

dient segment lengths, length bounds, slopes, and slope bounds are given in Table 6.

This is merely one provisional gradient term, and not intended to represent a com-

prehensive gradient characterization in spatiotemporal logical terms.

In terms of our segmentation feature, and the derived ratio of cell types, suppose

we have a primitive state function C : ∅ → Q that gives the current ratio of hypoxic

to viable cells in some spatially bounded area. Then given the results from our seg-
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mentation experiment below (Table 1), namely for the mean H:V ratio, we have the

following temporal term, with respect to t0:

Gt,τ(C = 0.36± 0.24), (9)

where τ is an upper bound on the time (e.g., the run time of our simulation).
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If we assume the three spatial terms above are true for time bounded by τ, then

our final spatiotemporal logical proposition characterizing hypoxia is given by:

Gt,τ

(

(T(x1, x2) = N)Ux1,xN

(T(x1, x2) = H)Ux1,xH

(T(x1, x2) = V)Ux1,xV

(T(x1, x2) = H)Ux1,xH

(T(x1, x2) = N)

∧

(T(x1, x2) = N)Ux2,xN

(T(x1, x2) = H)Ux2,xH

(T(x1, x2) = V)Ux2,xV

(T(x1, x2) = H)Ux2,xH

(T(x1, x2) = N)

∧

(T(x1, x2) = N)U(x1,x2),(xN,xN)(T(x1, x2) = H)∧

F(x1,x2)←∇+(x1,x2),(xH+xV ,xH+xV)

(

(F(x1,x2)←∇+(x1,x2),(267+126,267+126)(∇+(x1, x2,p) = −0.06± 0.03))

U(x1,x2)←∇+(x1,x2),(xH+xV ,xH+xV)

(F(x1,x2)←∇+(x1,x2),(172+83,172+83)(∇+(x1, x2,p) = −0.21± 0.19))

)

)

∧

Gt,τ(C = 0.36± 0.24).

(10)
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3.2.3 Linear regression functional characterization

3.2.3.1 Ergodic assumption

We assume the tumor hypoxia process that generates our image data to be ergodic:

since we see so many instances of lesions, we are likely seeing every temporal state

of a typical lesion, and so, in the limit of static images, we observe the temporal and

spatial phenomenon of hypoxia.

3.2.3.2 Linear regression learning

We would now like to incorporate the quantitative image features defined above

into a linear functional form, whose weights are learned by regression [131], for a

lesion hypoxia similarity metric. Our approach here is adapted from earlier work in

a different domain [139]. This entails solving an overdetermined system of equations,

given by a1f1,j+ ...+anfn,j = 1, where the ai, i = 1, ...,n are the n feature coefficients

to be learned and the fi,j, i = 1, ...,n, j = 1, ...,m are the corresponding n feature

values over m � n observations forming the feature matrix, F. We train a linear

regression model on m calibrating lesions, having known similarity score 1, using

values from the n features, giving F�a = �1. The model has the analytic solution �a =

(FTF)−1FT�1. This gives a trained similarity estimator, ST = a1f1 + ... + anfn.

This formulation of ST assumes all lesions, i.e. their associated feature values, have

equal weight, owing to their equivalent validity as observations. However, such an

assumption may be challenged on the grounds that upon taking into consideration

the difference between the empirically measured null distribution and the actual

shape of the distribution in feature measurements, certain observations appear to be
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false positives, and others false negatives—a notion formally addressed by robust

regression, namely, the Beaton-Tukey formulation.

3.2.3.3 Weighting training data to address Type I and Type II errors

Normally, false positive examples appear as ones that deviate significantly from the

null-distribution, and if not discarded, can affect the statistical estimators adversely.

However, instead of discarding such outliers using sharp-thresholds, and using the

filtered examples in the estimator, one may assign to each data point a positive weight

that signifies how likely it is that a particular example is an outlier. Such a weight-

ing scheme could be based on the ideas underlying robust M-estimators—a class of

central tendency measures that make them resistant to local misbehavior caused by

outliers (e.g., false positives). We adapted the Beaton-Tukey biweight [14]—an itera-

tively reweighted measure — for this purpose of central tendency. We note that other

schemes, such as Huber’s M-estimator, could have been used with similar perfor-

mance. Both the biweight and the Huber weight functions are available in standard

statistical packages. Here we use Matlab’s robustfit command with default parameters

(weight function “bisquare,” using a tuning constant of 4.685).

M-estimator Θ uses these weights to compute the weighted average of sample

points: Θ =
∑

wi · xi/
∑

wi, 0 � wi � 1; the weights are determined in terms

a parameter descriptor ui = (xi − Θ)/δ, as follows: δ = MAD (median absolute

deviation) and

wi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[1− u2/4.685]2, if |u| � 4.685;

0, otherwise.
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In the context of our system, the xi, i = 1, ...,m are the feature values of the m

calibrating lesions in the training set. Each lesion is assigned a weight. If its weight

is zero, then the corresponding lesion is discarded from the training set. Of the m

training molecules, m ′ remain. This gives a weighted-trained similarity estimator,

SW = a1f1 + ... + anfn.

In our modeling of estimation error above, one or more features in training may in-

troduce too much variance (systematic error) or dependence (model error). We would

like our model to have an extensible and adaptive structure, where any number of

features may be used, and proceed with confidence, knowing that noisy or depen-

dent features will have a contribution to the estimate that shrinks to zero. We now

apply one of the following patterns of shrinkage to the feature coefficients, �a.

3.2.3.4 Shrinking feature coefficients to reduce feature space dimensionality

In 1961, James and Stein published their seminal paper [74] describing a method to

improve estimating a multivariate normal mean, �μ = [μ1, ...,μk], under expected sum

of squares error loss, provided the degree of freedom k � 3, and the μi are close to

the point to which the improved estimator shrinks.

Let �a = [a1, ...,ak] have a k-variate normal distribution with mean vector �μ and

covariance matrix σ2I, which we measure empirically in train mode. We would like

to estimate �μ using an estimator

δ(�a) = [δ1(�a), ..., δk(�a)] (11)
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under the sum of squares error loss

L(�μ, δ) =
k∑

i=1

(μi − δi)
2 (12)

In terms of expected loss,

R(�μ, δ) = Eμ[L(�μ, δ(�a))], (13)

James and Stein show that when k � 3, an improved estimator is obtained by a

symmetric (or spherical) shrinkage in �a given by

δ(�a) =

⎡
⎢⎢⎣1−

κ(m− k)s2

m∑
i=1

(N�a)2i

⎤
⎥⎥⎦

+

�a, (14)

where

κ =
(k− 2)

(m− k+ 2)
, (15)

and s2 is the empirical estimate of variance, σ2, given by

s2 =
1

(m− k)

m∑
i=1

(1− (F�a)i)
2. (16)
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and where [x]+ ≡ max{0, x}.

When extreme μi are likely, then spherical shrinkage may give little improvement.

This may occur, for instance, when the μi arise from a prior distribution with a long

tail. A property of spherical shrinkage is that its performance is guaranteed only in

a small subspace of parameter space, requiring that one select an estimator designed

with some notion of where �μ is likely to be, such that the estimator shrinks toward it.

An extreme μi will likely be outside of any small selected subspace, implying a large

denominator and so little, if any, shrinkage in �a, thereby giving no improvement. To

address this problem, Stein proposed a coordinate-based (or truncated) shrinkage

method, given by

δ
(f)
i (�a) =

⎡
⎢⎢⎢⎣1−

(f− 2)s2min{1, z(f)
|ai|

}

m∑
j=1

(F�q)2j

⎤
⎥⎥⎥⎦

+

ai, (17)

where f is a “large fraction” of k, zi = |ai|, i = 1, ...,k, z(1) < z(2) < ... < z(f) < ... <

z(k) forms a strictly increasing ordering on z1, ..., zk, s2 is the empirical estimate of

variance, σ2, given by

s2 =
1

(q− k)

q∑
i=1

(1− (F�a)i)
2, (18)

and �qi = min{ai, z(f)}, i = 1, ...,k. Stein shows this estimator is minimax if f � 3.

Observe that the denominator is small even when (k− f) of the μi are extreme.
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3.2.3.5 Applying the metric

Once the weighted-trained model feature coefficients, ai, have undergone shrinkage,

a ′
i, we have our final hypoxia similarity estimator, SW = a ′

1f1 + ... + a ′
nfn that can

measure out-of-sample lesions for their similarity to hypoxic lesions. SW gives a [0,1]

numerical score instead of a {0,1} outcome. A simulator that implements this scoring

function can then feed a branch-and-bound (optimization) process that can explore

the simulator’s configuration parameter space.

3.3 results & discussion

3.3.1 Image analysis experiment 1: segmenting by histogram multi-thresholding

3.3.1.1 Setup

Encouraged by our results for manually segmenting a few high-concentration anti-

pimonidazole images based on simple histogram thresholding—for determining crude

pixel area measures of segments, but not for producing segments that are suitable for

downstream processing—we decided to apply Otsu’s method [117] for automatic

multiple thresholding, implemented in the Matlab Image Processing Toolkit as mul-

tithresh. The pixel areas of viable and hypoxic cells (and their ratio) might possibly

serve as image/simulator features.

We compute this for a set of nT = 66 images across stratification criteria, magnifi-

cation, and high and low concentrations of anti-pimonidazole. Anticipating a likely

distinction between results for the high- and low-concentration images, we place,

alongside the results for the total set of images, those results for nH = 36 high-
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3.3 results & discussion

concentration images and nL = 30 low-concentration images, computed separately.

See Table 1. The table organization also reflects another distinction we may care to

consider, namely between unsmoothed and smoothed gray images. We illustrate this

distinction in Figure 24.

For our implementation, see the code listing in Section C.5.

Figure 24: How Otsu’s multithreshold segmentation differs between unsmoothed gray and
smoothed gray images. Dark blue regions denote hypoxic cells, light blue regions
denote viable cells, and yellow regions denote necrotic cells.

3.3.1.2 Results

See Table 1.
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3.3.1.3 Discussion

We observe the following for unsmoothed and smoothed images. Otsu’s method

finds intensity level partitions whose means are remarkably stable (CV={0.09, 0.09},

{0.09, 0.09}) across such a variable total set of images. As expected, the stability of

these partitions increases as we stratify the images into high-concentration (CV={0.07,

0.07},{0.09, 0.08}) and low-concentration (CV={0.06, 0.04}, {0.05, 0.05}) subsets. Of the

pixel proportions, the most stable mean value is always V :I, for the total set and

both strata. The mean H:V ratio is also stable across strata (CV={0.24, 0.20, 0.22}) for

unsmoothed images, but not as much (CV={0.45, 0.37, 0.33}) for smoothed images. In

unsmoothed images, across strata the H:V ratio has a similar mean value (σ={0.36,

0.32, 0.39}); in unsmoothed images, across strata, the mean values vary significantly

(σ={0.52, 0.39, 0.67}); between unsmoothed and smoothed images the corresponding

mean H:V ratio values seem to have no relationship ({0.36, 0.52}, {0.32, 0.39}, {0.39,

0.67}), though the smoothed, high-concentration mean value (0.39) does seem to fit

with the cross-strata values in the unsmoothed images.

We are encouraged by the high stability of the mean partition values, and the rea-

sonably high stability of the mean H:V ratio values for unsmoothed images. Perhaps

the mean partition values could serve as image/simulator features that the simulator

could measure in its 3D particle concentration lattice, and the mean H:V ratio could

serve as an image/simulator feature that the simulator could measure in its 3D cell

type lattice.
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3.3.2 Image analysis experiment 2: measuring gradients

3.3.2.1 Setup

We use our Intensity-Sample-Ray-Bundles algorithm to measure gradient properties

on high- and low-concentration anti-pimonidazole images that adhere to the stratifi-

cation criterion that they contain at least one complete lesion at 10× magnification,

and the lesions contain at least one blood vessel. For each image, we specify one or

more landmarks, (x,y) coordinates, that coincide with vessel locations on the corre-

sponding H&E tumor sections (separated orthotopically by 10 μm). These landmarks

are passed to the algorithm to be used as centers from which to extend intensity sam-

ple rays. We measure all gradients using 80 intensity sample rays per circle, centered

at each landmark. We selected 9 high-concentration anti-pimonidazole images (con-

taining 25 landmarks) and 8 low-concentration anti-pimonidazole images (containing

29 landmarks).

For each landmark the algorithm explores, it outputs the mean and median inten-

sity levels as a function of the radial distance away from the landmark. Both curves

are optimally fit using segmented least-squares with a cost parameter C = 200. These

curves are each usually fit by one, two, or three segments, of different lengths and

slopes. These are superimposed on their respective mean and median curves as part

of the output. (See Figure 19, for example.) In each case, we examined the output

and selected either the mean or median curve fit, depending on which fit gave fewer

segments; if they gave the same number of segments, then we selected the mean

curve fit. Since the length and slope of these fits characterizes the measured gradient,

we would like to use these—actually the average of these, over as wide a sample

as possible—as image/simulator features. However, we cannot compare, say, a one-
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segment fitted curve to a three-segment fitted one, since these give distinct character-

izations of the gradient and we ought to respect that observed distinction. Because of

this, we report our results in six tables. The one-, two-, and three-segment fits for the

high-concentration anti-pimonidazole images, and the one-, two-, and three-segment

fits for the low-concentration anti-pimonidazole images. See Table 2, Table 3, Table 4,

Table 5, Table 6, Table 7.

We should note two considerations we made for selecting results to show here.

First, we sometimes omitted spurious short or positive-slope segments that appeared

first in the sequence of segments (i.e., closest to the center of the circle), since these

constitute noisy measurements, usually due to the landmark residing in the center of

a high-intensity lumen or some low-intensity blob of pixels; consequently, in some of

the tables, the mean segment lengths do not sum to the mean radius length, owing

to the mean length of the omitted segments. Second, we selected only gradients that

correspond to radii discovered by our algorithm whose length scales match those of

the lesions in which they reside, i.e., the contour of the circle defined by the radius co-

incides with the outermost contour of the hypoxic region in the lesion. (See Figure 18,

for example.)

For our implementation, see the code listing in Section C.1.

3.3.2.2 Results

See Table 2, Table 3, Table 4, Table 5, Table 6, and Table 7.
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ni = 1,ng = 2 μ σ CV

radius 618.50 70.00 0.11
segment 1 length 459.00 11.31 0.02
segment 1 slope -0.02 0.00 0.00
segment 1 error 348.38 70.70 0.20

Table 2: 1-segment radii in high anti-pimonidazole images. The values of ng and ni report
that the statistics are from a sample of 2 gradients found in 1 image.

ni = 4,ng = 7 μ σ CV

radius 457.86 113.23 0.25
segment 1 length 84.86 35.41 0.42
segment 1 slope -0.13 0.08 0.63
segment 1 error 106.57 126.50 1.19
segment 2 length 351.71 72.17 0.21
segment 2 slope -0.03 0.02 0.50
segment 2 error 322.89 169.55 0.53

Table 3: 2-segment radii in high anti-pimonidazole images. The values of ng and ni report
that the statistics are from a sample of 7 gradients found in 4 images.
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ni = 8,ng = 16 μ σ CV

radius 477.25 95.07 0.20
segment 1 length 80.75 38.44 0.48
segment 1 slope -0.22 0.12 0.56
segment 1 error 68.39 57.47 0.84
segment 2 length 219.00 85.48 0.39
segment 2 slope -0.04 0.08 1.85
segment 2 error 158.19 123.14 0.78
segment 3 length 164.38 73.49 0.45
segment 3 slope -0.09 0.06 0.63
segment 3 error 115.89 122.65 1.06

Table 4: 3-segment radii in high anti-pimonidazole images. The values of ng and ni report
that the statistics are from a sample of 16 gradients found in 8 images.

ni = 2,ng = 4 μ σ CV

radius 348.00 49.29 0.14
segment 1 length 348.00 49.29 0.14
segment 1 slope -0.09 0.03 0.30
segment 1 error 288.37 199.55 0.69

Table 5: 1-segment radii in low anti-pimonidazole images. The values of ng and ni report that
the statistics are from a sample of 4 gradients found in 2 images.
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ni = 8,ng = 20 μ σ CV

radius 454.55 138.59 0.30
segment 1 length 172.25 82.96 0.48
segment 1 slope -0.21 0.19 0.91
segment 1 error 94.34 82.17 0.87
segment 2 length 267.40 125.64 0.47
segment 2 slope -0.06 0.03 0.55
segment 2 error 112.97 111.27 0.98

Table 6: 2-segment radii in low anti-pimonidazole images. The values of ng and ni report that
the statistics are from a sample of 20 gradients found in 8 images.

ni = 4,ng = 5 μ σ CV

radius 677.80 390.88 0.58
segment 1 length 153.60 74.42 0.48
segment 1 slope -0.17 0.21 1.23
segment 1 error 61.13 37.22 0.61
segment 2 length 187.40 64.40 0.34
segment 2 slope -0.08 0.07 0.94
segment 2 error 64.03 63.07 0.98
segment 3 length 318.20 417.14 1.31
segment 3 slope -0.04 0.01 0.35
segment 3 error 141.12 276.56 1.96

Table 7: 3-segment radii in low anti-pimonidazole images. The values of ng and ni report that
the statistics are from a sample of 5 gradients found in 4 images.

3.3.2.3 Discussion

For ease of discussion, let H denote the set of high-concentration anti-pimonidazole

images or the segmented gradient curves that derive from them, and L denote the
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set of low-concentration anti-pimonidazole images or the segmented gradient curves

that derive from them.

We immediately observe that the majority of gradients in H images have 3-segment

fits, whereas the majority of gradients in L images have 3-segment fits. This less com-

plicated structure of L gradients agrees with our intuition that they are better for

characterizing continuous gradients that are not punctuated by the relatively flat

middle segments we see with the H gradients. This is further bolstered by a closer

examination of the structure of the segmented curves. In comparing the H vs L seg-

mented gradient curves: H 1-segment curves are flatter than those of L; H 2-segment

curves are flatter in both segments than those of L; and H 3-segment curves are de-

fined by a concave-then-convex shape, whereas those of L are decidedly concave, i.e.,

they tend to have monotonically decreasing slopes as a function of radial distance

away from the vessel.

Suppose we focus only on L gradient curves, believing they more closely reflect real

underlying hypoxia gradients. We observe that as radial distance grows, the gradient

becomes nonlinear, following from its concavity. We have not performed nonlinear

fits to the gradient curves but suspect a quadratic (and certainly an exponential)

curve would easily fit with low error.

As a proportion of their sum, the first and second L segments tend to be 0.39 and

0.61 of their total 2-segment length, respectively; and the first, second, and third L

segments tend to be 0.23, 0.28, and 0.48 of their total 3-segment length, respectively.

These segment proportions, their slopes, and the parameterized nonlinear fit to the

gradient curve could serve as image features, and could easily be measured in our

simulation by inspecting the 3D lattice representing particle type concentrations.
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That said, we should note the statistical significance, and the degrees of error, we

see in the L gradient measurements. First, with 1-, 2-, and 3-segment sample sizes of

4, 20, and 5, respectively, we acknowledge that at least the 1- and 3-segment data are

less than statistically significant, and even the extreme variance—particularly with

the slopes of the first and second segments (CV = 1.23 and CV = 0.94, respectively),

and the length of the third segment (CV = 1.31) in the 3-segment fit—these might

diminish with a larger sample. Looking at the more significant sample of 2-segment

gradient measurements, we also see high variance in the slopes, with CV = 0.91 and

CV = 0.98 for segments 1 and 2, respectively. With this in mind, we are unclear how

ultimately useful these measure will be as generalized, canonical features to which

we should seek comparison in our simulation. Perhaps the parameterized nonlinear

fit will be more stable and therefore more suitable feature.

3.3.3 Image analysis experiment 3: measuring quad-tree statistics

3.3.3.1 Setup

Our Ply-Stats-Quad-Tree algorithm reports statistics related to the search tree for

the image that it processes. These include the count, sum, mean, median, standard

deviation, and CV for the number of leaves at each ply, and a histogram of the counts

of leaves at each ply. We use CV in intensity value of the current frame’s pixels as our

splitting property, where CV exceeding a given threshold, τ, generates a split. The

algorithm reports search tree statistics for the quad-tree dissection at a given value

of τ. It computes these for τ ∈ [0.01, 0.10] by increments of 0.01, therefore generating

10 sets of statistics for a given image. We selected τ ∈ {0.1, 0.5, 0.9} to report here.
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3.3 results & discussion

The mean histogram of ply counts (image frame sizes) might possibly serve as an

image/simulator feature.

We compute this for a set of nT = 66 images across stratification criteria, magnifi-

cation, and high and low concentrations of anti-pimonidazole. Anticipating a likely

distinction between results for the high- and low-concentration images, we produce,

along with the figure reporting the results for the total set of images (Figure 25),

those results for nH = 36 high-concentration images (Figure 26 ) and nL = 30 low-

concentration images (Figure 27), computed separately.

For our implementation, see the code listing in Section C.3.

3.3.3.2 Results

See Figure 25, Figure 26, and Figure 27.
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Figure 25: How Quad-Tree dissects images according to the prpoerty of CV in intensity level
of a given frame’s pixels: the mean window size profile across the total set of
images (n = 66). The left, middle, and right mean histograms correspond to τ ∈
{0.1, 0.5, 0.9}, respectively. The horizontal axis indicates ply depth, or frame size as
computed by x_dim

2i × y_dim
2i , where i ∈ [0, 12] is the ply depth, and x_dim and

y_dim are the x and y dimensions of the whole image, respectively. The vertical
axis indicates the mean count of search tree leaves at ply depth i. Error bars show
standard deviation.
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Figure 26: How Quad-Tree dissects images according to the prpoerty of CV in intensity
level of a given frame’s pixels: the mean window size profile across the high anti-
pimonidazole images (n = 36). The left, middle, and right mean histograms cor-
respond to τ ∈ {0.1, 0.5, 0.9}, respectively. The horizontal axis indicates ply depth,
or frame size as computed by x_dim

2i × y_dim
2i , where i ∈ [0, 12] is the ply depth,

and x_dim and y_dim are the x and y dimensions of the whole image, respectively.
The vertical axis indicates the mean count of search tree leaves at ply depth i. Error
bars show standard deviation.

117



3.3 results & discussion

0 5 10 15
−1

0

1

2

3

4

5
x 10

4

0 5 10 15
−100

0

100

200

300

400

500

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

Figure 27: How Quad-Tree dissects images according to the prpoerty of CV in intensity
level of a given frame’s pixels: the mean window size profile across the low anti-
pimonidazole images (n = 30). The left, middle, and right mean histograms cor-
respond to τ ∈ {0.1, 0.5, 0.9}, respectively. The horizontal axis indicates ply depth,
or frame size as computed by x_dim

2i × y_dim
2i , where i ∈ [0, 12] is the ply depth,

and x_dim and y_dim are the x and y dimensions of the whole image, respectively.
The vertical axis indicates the mean count of search tree leaves at ply depth i. Error
bars show standard deviation.

3.3.3.3 Discussion

At a glance, it is easy to observe the overwhelming degree of error in these measures,

regardless of stratification. While decreasing τ consistently produces a more stable

mean profile, even the minimum value of τ = 0.01 we tested is too disperse. We had

hoped that the frame size profiles would have converged to some stable mean “canon-

ical” profile, but this is not the case. As such, this is unusable as an image/simulator

feature.
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3.3.4 Image analysis experiment 4: deriving canonical EPC signatures

3.3.4.1 Setup

We implement an algorithm that follows directly from the approach taken by Hut-

terer, et al. [71] to construct an Euler-Poincaré signature curve for an image. First,

convert the RGB image I to an 8-bit gray level image Ig, but do not smooth. Then

for each gray level i = 1, ..., 255, produce a binary intensity-thresholded image Ii and

record EPC(Ii) for each i. This method gives a signature EPC curve for each I.

We perform this analysis for each image in a set of nT = 66 images across stratifi-

cation criteria, magnification, and high and low concentrations of anti-pimonidazole.

Anticipating a likely distinction between results for the high-concentration (nH = 36)

and low-concentration (nL = 30) images, we stratify the resulting curves, and for

each stratum, we compute a mean EPC curve separately. We plot these canonical

stratum curves with their respective standard deviations in Figure 28.

Then we approximate each canonical stratum curve with an optimized segmented

least-squares fit, and thereby compress the data into a smaller number of real-valued

coefficients—slope and y-intercept for each segment—that might possibly serve as

image/simulator features. The segmented least square fits are given by a dynamic

programming algorithm [86], using a cost parameter C = 50000. We also report the

sum of least-squares errors over all of the segments in the fit. (See Figure 29.) The seg-

ment fit coefficients and the error might possibly serve as image/simulator features.

For our implementation, see the code listing in Section C.4.

3.3.4.2 Results

See Figure 28 and Figure 29.
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Figure 28: The mean EPC curve over the total set of images (left, nT = 66), the high concentra-
tion anti-pimonidazole images (middle, nH = 36), and the low concentration anti-
pimonidazole images (right, nL = 30). Segmented least-squares fits to these curves
are given in Figure 29. The horizontal axis indicates the intensity level threshold
τ ∈ [1, 255] applied to the image prior to computing χ. The vertical axis indicates
the value of χ computed for each τ.
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Figure 29: The segmented least-squares fits to the mean EPC curves given in Figure 28. The
fit on the left is composed of 18 segments (specified by 36 coefficients), giving a
compression factor of 7.08 and a normalized least-squares error of 1082.84. The
fit in the middle is composed of 18 segments (specified by 36 coefficients), giving
a compression factor of 7.08 and a normalized least-squares error of 933.19. The
fit on the right is composed of 21 segments (specified by 42 coefficients), giving
a compression factor of 6.07 and a normalized least-squares error of 1063.19. The
horizontal axis indicates the intensity level threshold τ ∈ [1, 255] applied to the
image prior to computing χ. The vertical axis indicates the value of χ computed
for each τ.

3.3.4.3 Discussion

At a glance, it is easy to observe the overwhelming degree of error in these measures,

regardless of stratification. While one can roughly discern a characteristic shape sim-

ilarity in the curves, this is not rigorously established feature. We had hoped that the
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EPC curves would have converged to some stable mean “canonical” signature, but

this is not the case. As such, this is unusable as an image/simulator feature.

3.4 conclusions & future work

3.4.1 Conclusions

3.4.1.1 Our contributions

We contribute two algorithms for this study: Intensity-Sample-Ray-Bundles (a novel

algorithm) for gradient analysis with respect to a blood-vessel-centric view of hy-

poxia; and Ply-Stats-Quad-Tree (an extension of a common algorithm) for gathering

multiscale, hierarchical statistics on images relative to a splitting criterion. In addi-

tion, we implement the EPC curve algorithm by Hutterer, et al. [71], extending it to

approximate EPC curves with the segmented least-squares dynamic programming

algorithm given in [86].

We develop a simple spatiotemporal grammar of nested structures which we use

as an organizing principle for building qualitative hypoxia image/simulator features.

We extend the Probabilistic Bounded Linear Temporal Logic (PBLTL) given in [77]

to accommodate our needs for spatial and temporal specification in our problem

domain.

We derive a novel spatiotemporal logical proposition, φ, that characterizes our

hypoxia images as best understood by our human domain expertise and human

ability to generalize in a qualified way, with respect to the image features we have

examined.
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We propose a method to derive a linear regression functional characterization, f,

that characterizes our hypoxia images through a simple process of machine learning,

and we employ methods to avoid Type I and Type II errors, and reduce feature

dimensionality where possible. This method has been rigorously tested in another

image processing domain [139]. Testing it on the domain of hypoxia histology images

we leave for future work.

We have not implemented φ or f as feature integrators embedded in the simulator.

Before doing so, we must first establish a stable set of image/simulator features (the

aim of the image analysis), then implement their measurement as feature measurers

embedded in the simulation. So testing φ and f we leave for future work.

Toward establishing a set of candidate image/simulator features, we contributed

an analysis of: segmentation by Otsu’s multithreshold method, gradients by the

Intensity-Sample-Ray-Bundles algorithm, EPC-curves by the Hutterer, et al. algorithm,

and quad-tree ply statistics by the Ply-Stats-Quad-Tree algorithm. All of these were

based on the hypoxia histology images for our problem domain. Please see our find-

ings below.

3.4.1.2 Our findings

By way of stratifying our data, we affirmed our intuition that high-concentration

anti-pimonidazole images are better suited for intensity histogram-based image seg-

mentation and not well suited for gradient analysis; and the opposite is true for

low-concentration anti-pimonidazole images.

Due to their implicit variance, whole-image features, such as EPC-curves and quad-

tree ply statistics seem unreliable as image/simulator features. Perhaps quad-tree ply

statistics would be more stable and useful if a different splitting property were used
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than CV, like Moran’s I statistic or the EPC. The best of the whole-image features

we investigated emerge from Otsu’s multi-threshold segmentation, namely its par-

tition values, and the H:V ratio for unsmoothed images. Gradient measures, which

focus on lesion-scale, not image-scale, properties, seem more stable and useful for

image/simulator features, especially the implied parameterized nonlinear fit to the

gradient. But even these measures contain significant error. We should consider these

preliminary results based on preliminary image data.

3.4.2 Future work

3.4.2.1 To interface

implement feature measurers In this chapter, we have defined several im-

age features that have natural analogues in the domain of simulator features. Chem-

ical concentration 2D and 3D matrices lend themselves to thresholding and gradient

analysis. Cell population 2D and 3D matrices give us segmentation immediately, and

since simulated tissue type boundaries are trivial to detect, then so computation of

qualitative nested structure invariants. Further, they lend themselves to computing

cell type ratios in any size area or volume, spatial statistics (like Moran’s I), structural

characteristics (like the Euler-Poincaré, and other Minkowski functionals—already

implemented in our simulator), and they easily decompose into sub-areas and sub-

volumes for multiscale, hierarchical analysis. The more difficult part to implement is

the feature integrators.
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Specify the logical feature integrator Once φ is properly codified, it can specify the

logical feature integrator. We plan to construct a spatiotemporal logical proposition

that will combine those features best suited for this type of expression.

Specify the functional feature integrator Once f is properly codified, it can specify

the functional feature integrator. We plan to train a similarity score function and in

so doing, will select the features that give the most promising results.

3.4.2.2 To extend and enhance

broaden the biological tumor hypoxia study Our study is preliminary.

It is based on only two tumors xeno-graphed into a single organism. For each of

these tumors, only a handful of histology slides were produced, from which we took

our few H&E and anti-pimonidazole stain images. All of this points to the statistical

insignificance of our sample, and therefore the potential lack of robustness in our

results. Our first order of business is to conduct a broader study of hypoxia. This

study would include a large enough sample (e.g., more than 5 tumors) to capture

some of the natural variance we expect in tumors of different ages, proliferation

rates, angiogenicity, and convergent volumes. For histology, we would use a richer

grade of dilutions of anti-pimonidazole than just “high” and “low”. Younger tumors

will tend to have smaller necrotic cores and less vasculature. Tumor size positively

correlates with blood supply (number of vessels). A broader study such as this would

give us the opportunity to test many of our modeling assumptions, and the wider

sample would enable us to create a more robust characterization.

Use alternative phenotype(s) The DLD-1 K-Ras cancer phenotype we used for this

study is known to be particularly rich in collagen deposition. Given that collagen has
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been so problematic in our efforts to segment the images, and given that we aim to

broaden our study to capture the natural complexity of these tumors, we would like

to expand the number of cancer phenotypes to at least three.

Use alternative stains for hypoxia We could try using pimonidazole without the

counterstain, and determine if that would attenuate the structural noise in the images

that comes from the counterstain’s enhanced contrast.

Stain for neovasculature Newly grown blood vessels that arrive late on the scene

make a contribution to tissue oxygenation that is not well understood; perhaps it is

negligible. Neovasculature is difficult to distinguish from mature blood vessels. We

could use anti-CD-31 (an endothelial marker) and smooth muscle actin (SMA) that

labels blood vessels. We could then perform a gradient analysis between stratified

data sets to determine if we see any empirical differences, and if such differences do

exist, thus constituting a quantifiable principle for hypoxia.

Align with exprimental data from literature None of our findings have yet been

matched or calibrated with respect to quantities in the literature such as oxygen

diffusion rates in different tumor tissues and in collagen; in vivo consumption and

release rates of various tumor cell types; and proliferation rates of said types.

image processing

Measuring gradients We would like to conduct a study on our low-concentration

anti-pimonidazole images to fully examine the family of gradient slopes we extract,

and their variation. We would like to relate the slope of the hypoxia gradient to the
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size of the lesion (normalizing for radius length). Such a finding could shed light on

another quantifiable principle of hypoxia.

Toward a hierarchical or multiscale structural analysis Considering the quad-tree

recursive decomposition, we would like to try different splitting criteria based on

different image properties, including: cell surface density, cell volume density, tis-

sue connectedness (using the Euler-Poincare characteristic[107, 93, 59, 120, 125, 71]),

tissue heterogeneity (using Moran’s I statistic for spatial autocorrelation [20]), and

ratios of cell types.

3.4.2.3 To explore

image processing

Segmentation We would like to explore a number of avenues toward image segmen-

tation. First, perhaps raising contrast on original, not gray-blurred, image might im-

prove prospects. Though it would introduce more structural information (noise) into

an intensity-level-based analysis, it might steer us toward bounding regions based

on identifiable markers on the cells, thereby affording a more accurate estimation

of cell type area and relative orientation. Second, we could use the Beaton-Tukey bi-

weighting method [14] to compute each pixel’s contributions to the different modes.

Third, Gonzalez & Woods [56] propose a way to use quad-tree processing to perform

image segmentation, by merging the areas constituting the leaves of the search tree

(or rather, the planes in the lowest ply). Lastly, as discussed in the introduction, we

would like to explore using an MRF, texture-learning-based approach like that taken

by Wang, et al. [149].
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Characterizing segments Once we have found a suitable method for segmenting

lesions into their three constituent tissue types, then we can explore properly charac-

terizing each segment. These include: cell region thickness (minor, orthogonal axis),

cell region skeleton (using erosion morphological operators), cell surface density, cell

volume density, tissue connectedness (using the Euler-Poincare characteristic[107, 93,

59, 120, 125, 71]), tissue heterogeneity (using Moran’s I statistic for spatial autocor-

relation [20]), and ratios of cell types. The 8-connected components of each segment

define distinct sets (pixel blobs). These can be filtered for size, eliminating small noisy

components; those that remain can participate in a census and thus give size/area

statistics. These sets can undergo morphological transformations (like dilation and

erosion) that will transform them into distinct, minimal geometric objects whose

properties (like shape, thickness, branching factor and angle, curvature, and relative

orientation) can be computed, statistically analyzed, and mathematically (geometri-

cally) characterized. For example, it is apparent when you look at enough complete

lesions with hypoxic outer contours, that these take a similar shape. Such a shape

property might be governed by an intrinsic principle, like vessel location and oxygen

diffusion dynamics, or an extrinsic principle, like proximity to other lesions. In such

a case, a rigorous geometric characterization of, say, the loop of hypoxic cells that

bound a viable region, would help us assess the regularity of certain growth pat-

terns, and crucially (for the problem of this dissertation), provide a signature feature

that is also easy to compute in a simulation.

Measuring gradients Variance filters are a tool employed by the image processing

software Image-J3. These highlight edges in the image by replacing each pixel with

the neighborhood variance, computed at a specified radius. This might be useful as

3 http://rsbweb.nih.gov/ij/
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a preprocessing step in measuring hypoxia gradients in our complex images, as they

need not reference a hypothesized center. Along these lines, we would like to explore

using wavelet transforms [56] for detecting and measuring image gradients. Though

we have seen no studies that demonstrate this for histology images, they seem well

suited to the task.

linear regression function learning As an alternative to the Beaton-

Tukey biweighting approach, we would like to explore the use of Efron’s local em-

pirical fdr algorithm [35, 36] in our effort to control Type I and Type II errors in the

hypoxia image training data.
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4
F U T U R E W O R K : E X P L O R I N G S I M U L AT I O N PA R A M E T E R

S PA C E A N D E VA L U AT I N G I T S C O O R D I N AT E S

4.1 introduction

4.1.1 Problem statement

Identify the initial conditions and operational parameters of an in silico model (simu-

lation) that result in hypoxia, as characterized by the materials & methods in Chap-

ter 3.

4.1.2 Background & literature review

To our knowledge, no studies exist that address our computational inverse problem:

identify the initial conditions and operational parameters of a simulation framework

that drive it into a recognizable state of formally characterized hypoxia.

The closest approach we found is the study by Grosu, et al. [58], who use model

checking with a temporal logical characterization to tackle the problem of learning

and detecting emergent behavior in networks of cardiac myocytes. (See our discus-

sion in Section 1.5.) While this approach demonstrates the validity and effectiveness

of using temporal logic and model checking for the problems of specification and de-

tection of an emerging complex biological property, it is not so much concerned with

their version of the longer time scale computational inverse problem: what initial
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conditions and operational parameters drive simulated cardio myocytes to a likely

state of spiral waves followed by fibrillation. And the traditional model checking ap-

proach they have taken does not lend itself well to stochastic models—the motivation

for developing the statistical model checking approach.

4.1.3 Our materials & methods

4.1.3.1 The nature and extent of the simulation parameter space

The nature and extent of the simulation parameter space derives from the algorith-

mic specification given in the materials & methods of Chapter 2. We now enumerate

the parameters required to simulate n cell types and m particle types. The 2D or 3D

cell lattice may be initialized in any way, but for the purposes of this estimation, let

us assume that each cell type (including the vessel and empty types) require spec-

ification, and that each cell type’s initial locations in the lattice can be determined

by a positional function that uses one parameter for each spatial dimension. For a

2D simulation, that implies 2(2+ n) = 2n+ 4 parameters for specifying initial area

positions. For a 3D simulation, that implies 3(2+ n) = 3n+ 6 parameters for speci-

fying initial volume positions. The constant 2 comes from there being 2 preexisting

cell types (vessel and empty) whose parameters must be specified in addition to

those of the n cells types. Next we consider the operational parameters. Each par-

ticle type must have a diffusion rate, initial concentration, and basal lower-bound

and basal upper-bound concentrations. That implies 4m parameters. Each cell type

must have a consumption rate, release rate, and impact factor for each particle type,

implying 3nm parameters. Each cell type must be either replaceable or not, and ei-

ther reproductive or not, implying 2n parameters. Lastly we consider the condition
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behavior specification. We assume that a modest conditional behavior programming

would entail one trigger-action pair for each cell type, where each trigger-set is com-

prised of two three-argument predicates, and each action set is comprised of two

three-argument executions. This implies n(2 · 3+ 2 · 3) = 12n parameters. The final

tally is 3nm+ 16n+ 4m+ 4 parameters for a 2D simulation and 3nm+ 17n+ 4m+ 6

parameters for a 3D simulation. For even modest n and m, this is a large configura-

tion space, C, to explore. However, certain simulations we are interested in exist in a

smaller space than the one just estimated.

For concreteness, let us consider the 2D simulation that we have observed will gen-

erate stable local regions of hypoxia. This simulation uses vessel and empty cell types

and three additional ones, to represent viable, hypoxic, and necrotic cells (n = 5).

It simulates only oxygen (m = 1). The initial positions of 10 vessels are randomly

placed, using one parameter to specify the number of vessels and two spatial param-

eters to obtain random numbers in the admissible range, and two spatial parameters

to give the coordinates of the first proliferating viable cell (5 parameters). There are

4m = 4 parameters to specify oxygen diffusion rate, initial concentration, and upper-

and lower-basal concentrations. There are 3nm = 15 parameters to specify the cell

consumption and release rates of oxygen, and the impact factors of oxygen upon

the cell types. There are 2n = 10 parameters to specify the replaceable and repro-

ductive predicates of each cell type. This simulation uses a simpler conditional logic

configuration than assumed above. Here, the viable cell type has one trigger-action

pair: if oxygen concentration is less than 0.07 then become hypoxic (5 parameters);

and the hypoxic cell type has two trigger-action pairs: (1) if oxygen concentration is

less than 0.05 then become necrotic (5 parameters), and (2) if oxygen concentration is
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greater than 0.07 then become viable (5 parameters). The tally for this simulation is

49 parameters.

4.1.3.2 Attacking the curse of dimensionality

When considering problems in dynamic optimization, Richard Bellman coined the

term “curse of dimensionality” to describe the difficulties implicit in large data

spaces. In general, when the dimensionality increases, the volume of the space grows

so fast that the available data becomes sparse, and this becomes problematic if we

hope to use methods that require statistical significance, since the amount of data

required to support a result grows exponentially in the dimensionality.

If we were interested in the more difficult problem of estimating or reconstructing

the joint probability distributions between parameter random variables (or even just

their individual distributions), or if we were faced with the problem of obtaining

a sequence of random samples from a probability distribution for which direct sam-

pling is difficult, then we would consider using one of the Markov chain Monte Carlo

(MCMC) approaches widely cited in the literature, like Metropolis-Hastings [104] or

Gibbs sampling [51].

But for our problem, we will assume that in the absence of simplifying factors or

expert knowledge of the biology, each random variable has a uniform, independent

probability distribution. Our aim here is modest: sample the large parameter space

using a vanilla Monte Carlo algorithm [105] and accumulate families of nearby so-

lutions. We do attempt to make this process more efficient by learning from each

sample’s truth outcome if it is in {0,1}, or branching-and-bounding sampled sub-

spaces where the sample values are in [0,1]. In this way, we propose two simple

“adaptive Monte Carlo” methods, MC-Boost and MC-Walk, that employ boosting of
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the independent probability distributions upon successful samples, and constrained

random walks around successful samples, respectively. And we propose a simple

adaptation to the traditional branch-and-bound algorithm, MC-Branch-and-Bound:

instead of systematically exploring a subspace of problems, we employ constrained

Monte Carlo sampling of each subspace.

4.1.3.3 Bayesian statistical model checking

Legay, et al. [92] provide a good overview of statistical model checking. A number of

recent computational studies [77, 162, 54, 55] have employed statistical model check-

ing algorithms to verify spatiotemporal logical propositions in biological systems.

They use temporal logic to characterize phenomena of interest in: a fibroblast growth

factor signaling model, circadian rhythm, yeast heterotrimeric G protein cycle con-

trol, and the HMGB1 signaling pathway in cancer. Jha, et al. [77] give the Bayesian

statistical model checking algorithm we employ here.

The version of our stochastic simulation framework that embeds the logical feature

integrator/detector will produce as its output a value in {0,1}, indicating whether or

not it detected the emergence of hypoxia during its execution trace, as characterized

by the spatiotemporal logical proposition φ. But given a fixed parametric configu-

ration, c ∈ C, that Bernoulli outcome of the simulation is itself stochastic. So we

need a method for deciding the outcome of a Bernoulli stochastic random variable

over a multitude of outcomes. The best way we have found for doing such inference

is the Bayesian hypothesis testing algorithm developed for the probabilistic model

checking problem [77, 162, 54, 55]. We outline the Bayesian statistical model checking

algorithm given in [77] below, in our materials & methods.
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4.1.3.4 Mean-variance thresholding

The version of our stochastic simulation framework that embeds the functional fea-

ture integrator/detector will produce as its output a numerical quantity in [0,1], in-

dicating the most similar outcome to hypoxia that the simulator has detected during

its execution trace, as characterized by the similarity function f. But given a fixed

parametric configuration, c ∈ C, that numerical outcome of the simulation is itself

stochastic. So we need a method for deciding the stable value of a stochastic random

variable in [0,1] over a multitude of outcomes. One obvious, simple approach we

have adopted is to examine its mean and standard deviation, and apply a threshold

to its CV = σ
μ

.

4.2 materials & methods

4.2.1 Statistical model checking by Bayesian hypothesis testing

Jha, et al. [77] formulate Bayesian statistical model checking in the following way, cast

in terms of our problem.

The probabilistic model checking (PMC) problem is: given a stochastic simulator S,

a starting state s0, a BLTL proposition φ, and a probability threshold θ ∈ (0, 1), decide

algorithmically whether S, s0 |= P�θ(φ). Let p be the unknown but fixed probability

of the model satisfying φ. We can now restate the PMC problem as deciding between

two hypotheses: H0 : p � θ and H1 : p < θ. For any trace σi of our simulation, S,

we can deterministically decide whether σ1 satisfies φ. Therefore, we can define a

Bernoulli random variable Xi denoting the outcome of σi |= φ.
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Since each simulation trace is given by an independent execution of the model, we

can assume the Xi are i.i.d. Since p is unknown, we assume it is given by a random

variable, whose density g(.) is called the prior density. The prior is usually based

on our previous experiences and beliefs about S. If we are totally ignorant of the

likelihood of whether S will satisfy φ, then we use a non-informative or objective prior.

The authors define the Bayes factor B of sample d = (x1, ..., xn), xi ∈ Xi, i = 1, ...,n

and hypotheses H0 and H1 as B =
P(d|H0)
P(d|H1)

. They cite Jeffreys [75], who treats B as

a measure of the relative confidence in H0 versus H1, and who believes that Bayes

factors in excess of 100 provide decisive evidence in favor of H0. To test H0 versus H1,

the authors compute the Bayes factor of the available data, then compare it against a

fixed threshold, T > 1. They accept H0 iff B > T . In the dual interpretation, Jeffreys

treats 1
B

as the measure of evidence in favor of H1.

They show how to compute the Bayes factor using the conjugate prior to the

Bernoulli distribution, namely the Beta distribution, and then give an algorithm that

is essentially a sequential version of Jeffreys’ test. Initially, two counters are set to 0:

n, which denotes the number of traces drawn so far, and s, which denotes the num-

ber of traces satisfying φ so far. It iteratively draws i.i.d. simulation sample traces

σ1,σ2, ..., incrementing n each time, and checks whether they satisfy φ. (In the case

of our proposed system, this check happens in the logical feature integrator/detector

that is embedded in the simulator.) The truth or falsity of whether a given simula-

tion trace satisfies φ is treated as independent sampling from a Bernoulli distribution

X of unknown parameter p, the actual probability of the simulation satisfying φ. If

σi |= φ, then s is incremented. At stage k the algorithm has drawn samples x1, ..., xk

i.i.d. from X. It then computes Bk in terms of the Beta distribution, using the counter
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values of n and s: Bk = 1
F(s+α,n−s+β) − 1. The algorithm stops iff (Bk > T ∨Bk < 1

T
).

When this occurs, it will accept H0 iff Bk > T , and will accept H1 iff Bk < 1
T

.

The authors prove two theorems related to the algorithm’s performance.

theorem 1 (termination). The SMC-BHT decision algorithm terminates with

probability one, for Beta priors and Bernoulli samples.

theorem 2 (error bound). If the SMC-BHT decision algorithm terminates after

observing n sample traces, then an upper bound on the probability of the Type I error is
∑n

x=0 I{B(n,x)<1
T }

x

(
n
x

)
txmax(1− tmax)

n−x, where tmax is the value of t that maximizes

ti(1− t)n−i defined on [θ, 1], T is the Bayes Factor threshold used in the algorithm, and I is

the indicator function.

We interpret our simulator trace as a Bernoulli trial for a given model configura-

tion, c ∈ C, implementing a fixed spatiotemporal logical definition, φ, of hypoxia.

The SMC-BHT decision algorithm described above is thus a partitioning function for

our simulator configuration space, giving hypoxia-generating versus non-hypoxia-

generating subsets of simulator parameters.

In our implementation of this algorithm (Section D.1), we set α = β = 1, such that

the Beta distribution is a non-informative prior of g(.). We follow the authors’ advice

in setting T > 100. As for θ, we will likely need to test each c ∈ C using several values

in the range [0.75, 1).
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4.2.2 Adaptive Monte Carlo sampling

Let C be our configuration parameter space, and c∗ ∈ C be a point decided true by

the Bayesian statistical model checker.

4.2.2.1 Ensembles of weak learners (EWL) using MC-Boost

The idea here is to deploy a large ensemble of weak learners, each of which myopi-

cally homes in on the locality of the first discovered c∗ points, and take the union

of their discovered subsets. We implement a single weak learner in the MC-Boost

algorithm. The algorithm takes four parameters: d for the number of dimensions, m

for the number of samples, σ for the Gaussian reward/penalty function, and w for

the weight of the Gaussian penalty function. We initialize the normalized PDFs for

each of the d axes. Then we adaptively sample m points according to evolving nor-

malized PDFs in the following way. Sample a point c ∈ C by sampling d coordinates

according to d normalized PDFs. Render a result according to a decision process:

our demonstration below uses a toy 2D space within which there are two solution

regions to be discovered; the real decision process would be the Bayesian statistical

model checker running multiple simulations for a given c ∈ C. If the result is true,

then: (1) record the true sample in the appropriate place; and (2) place a Gaussian

reward upon each axis, centered at each corresponding coordinate, having σ. Other-

wise, record the false sample in the appropriate place. In either case, renormalize the

evolved PDFs. Then continue sampling.

For our implementation, see the code listing in Section D.2.
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4.2.2.2 Ensembles of constrained random walkers (ECRW) using MC-Walk

The idea here is to sample C until discovering a c∗ point, then deploy a large en-

semble of constrained random walkers, each of which explores the locality of the c∗

point for some time, then general sampling across C continues; we take the union

of their discovered subsets. We implement a single random walker in the MC-Walk

algorithm. The algorithm takes four parameters: d for the number of dimensions,

m for the number of samples, p for the diffusion rate of the random walker, and n

for the number of random walk steps taken by the random walker. We initialize the

normalized PDFs for each of the d axes. Then we adaptively sample m points ac-

cording to evolving normalized PDFs in the following way. Sample a point c ∈ C by

sampling d coordinates according to d normalized PDFs. Render a result according

to a decision process: our demonstration below uses a toy 2D space within which

there are two solution regions to be discovered; the real decision process would be

the Bayesian statistical model checker running multiple simulations for a given c ∈ C.

If the result is true, then: (1) record the true sample in the appropriate place; and (2)

walk c∗ for n steps along d dimensions using diffusion rate p. Otherwise, record the

false sample in the appropriate place. Then continue sampling. However, within step

(2), for each of those n walk steps we do the following, reflecting the outer loop: (1)

render a result according to the same decision process; and (2) if true, then record

the true sample in the appropriate place; otherwise, record the false sample in the

appropriate place.

For our implementation, see the code listing in Section D.3.
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4.2.2.3 Iterative PCA (IPCA)

Though we leave it for exploratory future work, we facilitate the discussion below by

mentioning our idea for an iterative principle components analysis (PCA) algorithm.

The idea is that after a Monte Carlo sampling process accumulates a sufficient num-

ber of c∗ points, it performs PCA to reduce dimensionality. The number of principal

components is less than or equal to the number of original variables, such that the

first principal component has the largest possible variance—it accounts for as much

of the variability in the data as possible—and each succeeding component in turn has

the highest variance possible under the constraint that it be orthogonal to (uncorre-

lated with) the preceding components. PCA effectively incorporates a form of penalty

since it is based upon the scree plot where each successive principal component re-

ceives less weight. It is a common approach to reducing dimensionality in many

problem domains. Our algorithm will continue sampling until sufficiently many c∗

points are accumulated to repeat the application of PCA. And so on, iteratively.

4.2.2.4 Comparing the three algorthims

ECRW and EWL do not perform dimensionality reductions like IPCA. In EWL, each

myopic adaptive sampler in the ensemble suffers from trails of samples along each

dimension that lead to the cluster but are not inside of it (inefficiency). Since the

actual size of the clusters are unknown to the algorithm, using a global variance

parameter for the Gaussian reward function will likely lead to either over-exploration

inefficiency or overly constrained exploration (one variance does not fit all). ECRW

does not suffer from this problem, since, if we deploy an ensemble of random walkers

starting from the first hit in a potential cluster area, then these will diffusively spread

from the inside-out rather than be constrained by a reward function from the outside-
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in, where the outside is artificially assumed. However, unless an enormous number

of random walkers are deployed, or each walker diffuses with a very high diffusion

rate, this diffusion process is unlikely to discover the boundaries of the cluster area

in high dimensions. We envision IPCA operating in a loop over two phases until

some stopping criterion is met. Phase 1: collect some sufficient number of samples.

Phase 2: perform PCA on the samples. Repeat. One problem with this approach is

that PCA, once performed, cannot be reversed; the algorithm is locked into the new

Eigen dimensions. There is no correction to gain what is lost with each reduction.

In ECRW, each family of random walkers could be run in parallel. In EWL, each

member of the ensemble could be run in parallel. To our knowledge, IPCA cannot be

parallelized.

4.2.3 Mean-variance threshold driver

If our simulator embeds a functional integrator/detector, then it will return a simi-

larity score function that indicates the hypoxia detection “high water mark” during

the course of the simulation. Since our simulation is stochastic, for any given fixed

c ∈ C, this returned value will fluctuate, and so constitutes a random variable in

[0,1]. We assume that its value has a central tendency for any given c ∈ C and thus,

it can be measured and bounded over successive outcomes by its mean and standard

deviation, or rather, by the dimensionless coefficient of variation, CV = σ
μ

. The mean-

variance threshold driver is a simple method that decides to accept a mean value

if and only if its CV is below some specified threshold by some cutoff number of

measured outcomes. An accepted mean value associated with c is passed up to the

MC-Branch-and-Bound sampler.
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For our implementation, see the code listing in Section D.4.

4.2.4 Monte Carlo branch-and-bound sampling

Branch-and-bound [90, 106] is a general approach for finding optimal solutions of

optimization problems, usually in discrete and combinatorial optimization. As such,

it requires a metric or objective function to guide its pruning decisions. Our approach

for developing this, outlined in the materials & methods in Chapter 3, is to construct

a linear regression learning function, f, that characterizes hypoxia in terms of the

image features we are able to extract. Linear functions are by definition monotonic,

and ours gives a similarity score in the range [0,1]. We feel this is sufficient to enable

the branch-and-bound approach taken here.

Our goal is to maximize f(c), where c ∈ C, our space of solution candidates.

Branch-and-bound requires two procedures. The first procedure splits, taking some

set C ′ ⊆ C and returning smaller sets C ′
1, ...,C ′

n whose union covers C ′. We observe

that maxc∈C ′ f(c) = max {μ1, ...,μn}, where μi = maxc∈C ′
i
f(c), i = 1, ...,n. This en-

ables the branching step, so named since the recursive application of splitting defines

a search tree whose nodes are the subsets of C. The second procedure computes the

upper and lower bounds for maxc∈C ′ f(c), for some C ′ ⊆ C. The branch-and-bound

pruning principle is this: if the upper bound for some search tree node, U, is less than

the lower bound of some other search tree node, V , then we may safely remove U from

the search space. Recursion halts when |C ′| = 1 or when minc∈C ′ f(c) = maxc∈C ′ f(c),

ensuring any c ∈ C ′ = maxc ′∈C ′ f(c ′).

We adapt the traditional branch-and-bound algorithm in the following way. The

bound step computes the upper and lower bounds not by exhaustively evaluating the
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subset C ′
i, but instead by Monte Carlo sampling within C ′

i, thereby giving the bounds

on maxc∈C ′
s
f(c), for some sampled subset C ′

s ⊆ C ′
i. This adaptation to use sampling

defines our MC-Branch-and-Bound algorithm.

For our implementation, see the code listing in Section D.5.

4.3 demonstrations & discussion

4.3.0.1 The toy system

To illustrate the way these adaptive methods work and how they perform, we will

use a toy version of the actual problem, consisting in 2 parameters, whose values

are normalized to [0,1], and which contains two solution areas, a rectangle (at center

bottom) and a smaller circle (at upper right). We use a toy system for two reasons.

First, these algorithms are easier to visualize in 2D than in a higher dimensional

space. Second, two phases of future work must first be completed—characterizing

hypoxia by a stable set of image/simulator features, and implementing the derived

embedded feature measurers and integrators in the simulation—before we can test

these algorithms on the high-dimensional data for our problem.

4.3.1 Ensembles of weak learners using MC-Boost

4.3.1.1 Setup

We demonstrate the MC-Boost algorithm for a range of parameters. The first set of

8 images correspond to the algorithm’s myopic discovery of one solution area; the

second set of 8 images correspond to the other solution area. Each set of 8 images is
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broken down into two sets of 4 images. The first set of 4 images correspond to 100

sample points; the second set of 4 images correspond to 1000 sample points. Each set

of 4 images explores two values of two parameters: boost weight ∈ {1, 100} (x-axis)

and σ ∈ {0.1, 0.01} (y-axis). See Figure 30 and Figure 31 and Figure 32 and Figure 33.

4.3.1.2 Demonstration
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Figure 30: MC-Boost: solution area #1, 100 sample points, x-axis indicates boost weight: 1 or
100, y-axis indicates σ: 0.1 or 0.01.

144



4.3 demonstrations & discussion

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 31: MC-Boost: solution area #1, 1000 sample points, x-axis indicates boost weight: 1 or
100, y-axis indicates σ: 0.1 or 0.01.
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Figure 32: MC-Boost: solution area #2, 100 sample points, x-axis indicates boost weight: 1 or
100, y-axis indicates σ: 0.1 or 0.01.
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Figure 33: MC-Boost: solution area #2, 1000 sample points, x-axis indicates boost weight: 1 or
100, y-axis indicates σ: 0.1 or 0.01.

4.3.1.3 Discussion

The basic trade-offs are evident in the figures. Holding boost weight fixed, increasing

σ broadens coverage, at the potential cost of exploring areas outside of the target zone;

while narrowing σ may force the algorithm to explore only a subspace of the solution.

Holding σ fixed, increasing the boost weight reigns in the signature trails of samples

along each dimension, at the potential cost of forcing the algorithm the explore on

a subspace of the solution. Increasing the number of sample points amplifies this

pattern, which holds across both solution areas.
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4.3.2 Ensembles of constrained random walkers using MC-Walk

4.3.2.1 Setup

We demonstrate the MC-Walk algorithm for a range of parameters. The first set of

4 images correspond to 100 sample points; the second set of 4 images correspond

to 1000 sample points. Each set of 4 images explores two values of two parameters:

walker steps ∈ {10, 100} (x-axis) and diffusion rate ∈ {0.0001, 0.00001} (y-axis). See

Figure 34 and Figure 35.
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4.3.2.2 Demonstration
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Figure 34: MC-Walk: 100 sample points, x-axis indicates walker steps: 10 or 100, y-axis indi-
cates diffusion rate: 0.0001 or 0.00001.
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Figure 35: MC-Walk: 1000 sample points, x-axis indicates walker steps: 10 or 100, y-axis indi-
cates diffusion rate: 0.0001 or 0.00001.

4.3.2.3 Discussion

The basic trade-offs are evident in the figures. Holding walker steps fixed, increasing

the diffusion rate increases the span of exploration at the potential cost of lower-

ing the concentration of hits. Holding diffusion rate fixed, increasing the number of

149



4.3 demonstrations & discussion

walker steps does not change the concentration of hits much but does increase the

coverage. Increasing the number of sample points amplifies this pattern.

4.3.3 MC-Branch-and-Bound

4.3.3.1 Setup

We implement MC-Branch-and-Bound on an image, whose sampled 8-bit intensity

values (I(x,y) ∈ [0, 255]), when normalized, represent the return value of a decision

process giving outcome [0,1]. We use the quad-tree decomposition as the split pro-

cedure, where any given frame of candidate pixels is recursively subdivided on the

basis of a splitting decision. This decision is the bound procedure and works as fol-

lows. Each frame is sampled some number of times. We chose to sample 2(7−d) times,

where d is the depth, or ply index, starting at 0. Thus, the original image is sampled

128 times, then, if considered, each quadrant frame is sampled 64 times, etc. We use a

recursive depth cutoff of n = 6. After sampling, the minimum, Imin, and maximum,

Imax, sampled intensity values are computed and compared to a global minimum

value, T , initialized to 0. If Imin > T then T = Imin. Next, if Imax > 0 and Imax � T

and d < n, then we decompose the current frame into quadrants; otherwise we do

not, effectively pruning this frame from the search space. We blur the original so-

lution image on which the algorithm runs, to produce gradients of sample values

between 0 and 255; this reflects our belief that the real parameter space is not rough

and discontinuous in its hypoxia-similarity values, as given by f(c). Figure 36 shows

the quad-tree-based MC-Branch-and-Bound result on a blurred “solution image”.
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4.3.3.2 Demonstration

Figure 36: MC-Branch-and-Bound: search results for an underlying “solution image”.

4.3.3.3 Discussion

The initial 128 samples sufficed for MC-Branch-and-Bound to home in on the solution

areas within three recursive splits.
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4.4 conclusions & future work

4.4.1 Conclusions

4.4.1.1 Our contributions

We have proposed three adaptations to the Monte Carlo sampling algorithm to suit

our needs for this problem, which is really one about adaptive sampling through

feedback, where the values of the points govern the adaptation. These are MC-Boost,

MC-Walk, and MC-Branch-and-Bound. While these do not pose fundamental algo-

rithmic innovations, they are a push in the right direction for our problem domain.

4.4.2 Future work

4.4.2.1 To extend and enhance

informative priors We would next like to incorporate biological domain

knowledge to constrain our parameter configuration space, C. Every parameter dis-

tribution need not be uniform. Knowing the probable and improbable pre-hypoxic

tumor tissue structure, for example, would shear away a large set of parameters per-

taining to initial cell positions in space, as would considering the physiological in vivo

norms for oxygen diffusion, and oxygen and nutrient consumption rates in different

human tumor tissues. For tissue culture simulations, we would like to use the NCI-

60 CORE profile [140, 72] for establishing in vitro norms for oxygen and nutrients in

different human tumor tissues.
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4.4.2.2 To explore

4.4.2.3 Reducing parameter space dimensionality

As noted earlier, we would like to explore developing an iterated PCA algorithm

for the adaptive sampling problem. Along these lines, perhaps there is a role James-

Stein shrinkage [74, 138, 33] could play in the other Monte Carlo-based algorithms

that would lend itself to iterative dimension reduction.
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A
S I M U L AT O R E X A M P L E S

a.1 symmetric mutual need (2d)

a.1.1 Setup

In this simulation, we have two cell types, α and β. They each release one particle

type that the other consumes. The release rates are higher than their respective con-

sumption rates, so that concentrations will not diminish too quickly. Each particle

type consumed affects fitness in a positive way. All rates and impact factors are sym-

metric. Hence, this situation reflects symmetric mutual need between two cell types.

Both cell types are replaceable and reproductive. The specific quantities mentioned

here are given in the tables below.

a.1.1.1 Configuration parameters

pt 1 pt 2
0.1 0.1

Table 8: Diffusion rate of each particle type.

pt 1 pt 2
0.1 0.1

Table 9: Initial concentration of each particle type.
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cell type pt 1 pt 2
vessel 0 0
empty 0 0
α 0 0
β 0 0

Table 10: Basal lower-bound concentration of each particle type by cell type.

cell type pt 1 pt 2
vessel ∞ ∞
empty ∞ ∞
α ∞ ∞
β ∞ ∞

Table 11: Basal upper-bound concentration of each particle type by cell type.

cell type pt 1 pt 2
vessel 0 0
empty 0 0
α 0.1 0
β 0 0.1

Table 12: Consumption rate of each particle type by cell type.

cell type pt 1 pt 2
vessel 0 0
empty 0 0
α 0 0.2
β 0.2 0

Table 13: Release rate for of particle type by cell type.
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cell type pt 1 pt 2
vessel 0 0
empty 0 0
α 2 0
β 0 2

Table 14: Impact factor of each particle type upon each cell type.

cell type replaceable?
vessel No
empty Yes
α Yes
β Yes

Table 15: Replaceable predicate of each cell type.

cell type reproductive?
vessel No
empty Yes
α Yes
β Yes

Table 16: Reproductive predicate of each cell type.

a.1.1.2 Initial conditions

The simulation opens with the initial concentrations of both particle types specified

in Table 9. These diffuse with rates specified in Table 8. We initialize the 2D lattice

with a random mixture of empty, α, and β cells.
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a.1.2 Results

a.1.2.1 Spatial cell population evolution

Figure 37: Time evolution of cell populations. Left-to-right, top-to-bottom: 500 generations
shown in 36 frames (t = 1, 15, 29, 43, 57, 71, 85, 99, 113, 127, 141, 155, 169, 183, 197,
211, 225, 239, 254, 268, 283, 297, 312, 326, 341, 355, 370, 384, 399, 413, 428, 442, 457,
471, 486, 500). Key: vessel (white), empty, α, β.
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Figure 38: Time evolution of cell populations. Left-to-right, top-to-bottom: 200 generations
shown in 36 frames (t = 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 90, 96,
101, 107, 112, 118, 123, 129, 134, 140, 145, 151, 156, 162, 167, 173, 178, 184, 189, 195,
200). Key: vessel (white), empty, α, β.
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a.1.2.2 Temporal cell population evolution

Figure 39: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, α, β.

a.1.3 Discussion

We observe in Figure 37 and Figure 38 that the α and β cell populations die back

to near extinction at first, given the low initial concentrations of particles required
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for their fitness. Then some clusters of α and β cells form, and the local concen-

trations of particles accumulates to a point that surpasses their consumption rates,

supporting proliferation of both cell types simultaneously and reciprocally. In Fig-

ure 39 we observe that from generation 25 to 150, as the clusters congeal and begin

to take over the space, but prior to their fully populating the space, the α and β cell

population sizes oscillate with a similar period but a small time delay, suggesting

a Lotka-Volterra (“predator-prey”) [99, 147] population dynamics has emerged. Af-

ter generation 150, the time delay between the two oscillations begins to vanish as

the population dynamics necessarily becomes zero-sum in character. By generation

175, the two populations have converged at, and oscillate about, the same mean size,

which continues indefinitely.

a.2 symmetric fitness with one vessel (2d)

a.2.1 Setup

In this simulation, we have two cell types, α and β. They both release no particles, and

both consume the same two particle types at the same rate, which affect their fitness

in a positive way to the same extent. All rates and impact factors are symmetric. The

one vessel that extends down from the top-middle consumes no particle types and

releases both particle types. Both cell types are replaceable and reproductive. The

specific quantities mentioned here are given in the tables below.
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a.2.1.1 Configuration parameters

pt 1 pt 2
10.0 10.0

Table 17: Diffusion rate of each particle type.

pt 1 pt 2
0 0

Table 18: Initial concentration of each particle type.

cell type pt 1 pt 2
vessel 0.1 0.1
empty 0.1 0.1
α 0.1 0.1
β 0.1 0.1

Table 19: Basal lower-bound concentration of each particle type by cell type.

cell type pt 1 pt 2
vessel ∞ ∞
empty ∞ ∞
α ∞ ∞
β ∞ ∞

Table 20: Basal upper-bound concentration of each particle type by cell type.

161



appendices

cell type pt 1 pt 2
vessel 0 0
empty 0 0
α 0.1 0.1
β 0.1 0.1

Table 21: Consumption rate of each particle type by cell type.

cell type pt 1 pt 2
vessel 1.0 1.0
empty 0 0
α 0 0
β 0 0

Table 22: Release rate for of particle type by cell type.

cell type pt 1 pt 2
vessel 0 0
empty 0 0
α 0.8 0.8
β 0.8 0.8

Table 23: Impact factor of each particle type upon each cell type.

cell type replaceable?
vessel No
empty Yes
α Yes
β Yes

Table 24: Replaceable predicate of each cell type.
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cell type reproductive?
vessel No
empty Yes
α Yes
β Yes

Table 25: Reproductive predicate of each cell type.

a.2.1.2 Initial conditions

The simulation opens with initial concentrations of both particle types set to zero, as

specified in Table 18, and lower-bounded basal concentrations of both particle types,

as specified in Table 19. These diffuse with rates specified in Table 17. We initialize

the 2D lattice with a random mixture of empty, α, and β cells, and place one vessel

extending down from the top-middle.
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a.2.2 Results

a.2.2.1 Spatial cell population evolution

Figure 40: Time evolution of cell populations. Left-to-right, top-to-bottom: 660 generations
shown in 36 frames (t = 1, 20, 39, 58, 77, 96, 115, 134, 153, 172, 191, 210, 229, 248,
267, 286, 305, 324, 343, 362, 381, 400, 419, 438, 457, 475, 494, 512, 531, 549, 568, 586,
605, 623, 642, 660). Key: vessel (white), empty, α, β.
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Figure 41: Time evolution of cell populations. Left-to-right, top-to-bottom: 420 generations
shown in 36 frames (t = 1, 13, 25, 37, 49, 61, 73, 85, 97, 109, 121, 133, 145, 157, 169,
181, 193, 205, 217, 229, 241, 253, 265, 277, 289, 301, 313, 325, 337, 349, 361, 373, 385,
397, 409, 420). Key: vessel (white), empty, α, β.
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a.2.2.2 Temporal cell population evolution

Figure 42: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, α, β.

a.2.3 Discussion

We observe in Figure 40 and Figure 41 that the α and β cell populations die back to

near extinction at first, given the low basal concentrations of particles required for
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their fitness, and their high diffusion rates. Then some clusters of α and β cells form

by chance since they are near the vessel, and the local concentrations of particles ac-

cumulates to a point that surpasses their consumption rates, supporting proliferation

of both cell types simultaneously but not reciprocally. In Figure 42 we observe that

from generation 10 to 400, as the clusters separately begin to take over the space, but

prior to their fully populating the space, the α and β cell population sizes oscillate

with no observable relationship to each other, as we expect from symmetric but inde-

pendent growth. After generation 400, the population dynamics necessarily becomes

zero-sum in character. By this time, the two populations have converged at, and os-

cillate about, the same mean size, which continues indefinitely. Notice the significant

difference in the two convergence times: symmetric mutual need is generation 175;

symmetric fitness with one vessel is generation 400.

a.3 asymmetric fitness with one vessel (2d)

a.3.1 Setup

In this simulation, we have two cell types, α and β. They both release no particles, and

both consume the same two particle types at the same rate, which affect their fitness

in a positive way, but to different extents. All rates are symmetric. The one vessel

that extends down from the top-middle consumes no particle types and releases

both particle types. Both cell types are replaceable and reproductive. The specific

quantities mentioned here are given in the tables below.
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a.3.1.1 Configuration parameters

pt 1 pt 2
10.0 10.0

Table 26: Diffusion rate of each particle type.

pt 1 pt 2
0 0

Table 27: Initial concentration of each particle type.

cell type pt 1 pt 2
vessel 0.1 0.1
empty 0.1 0.1
α 0.1 0.1
β 0.1 0.1

Table 28: Basal lower-bound concentration of each particle type by cell type.

cell type pt 1 pt 2
vessel ∞ ∞
empty ∞ ∞
α ∞ ∞
β ∞ ∞

Table 29: Basal upper-bound concentration of each particle type by cell type.
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cell type pt 1 pt 2
vessel 0 0
empty 0 0
α 0.1 0.1
β 0.1 0.1

Table 30: Consumption rate of each particle type by cell type.

cell type pt 1 pt 2
vessel 1.0 1.0
empty 0 0
α 0 0
β 0 0

Table 31: Release rate for of particle type by cell type.

cell type pt 1 pt 2
vessel 0 0
empty 0 0
α 0.8 0.8
β 1.5 1.5

Table 32: Impact factor of each particle type upon each cell type.

cell type replaceable?
vessel No
empty Yes
α Yes
β Yes

Table 33: Replaceable predicate of each cell type.
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cell type reproductive?
vessel No
empty Yes
α Yes
β Yes

Table 34: Reproductive predicate of each cell type.

a.3.1.2 Initial conditions

The simulation opens with initial concentrations of both particle types set to zero, as

specified in Table 27, and lower-bounded basal concentrations of both particle types,

as specified in Table 28. These diffuse with rates specified in Table 26. We initialize

the 2D lattice with a random mixture of empty, α, and β cells, and place one vessel

extending down from the top-middle.
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a.3.2 Results

a.3.2.1 Spatial cell population evolution

Figure 43: Time evolution of cell populations. Left-to-right, top-to-bottom: 1000 generations
shown in 36 frames (t = 1, 30, 59, 88, 117, 145, 174, 202, 231, 259, 288, 316, 345, 373,
402, 430, 459, 487, 516, 544, 573, 601, 630, 658, 687, 715, 744, 772, 801, 829, 858, 886,
915, 943, 972, 1000). Key: vessel (white), empty, α, β.
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Figure 44: Time evolution of cell populations. Left-to-right, top-to-bottom: 500 generations
shown in 36 frames (t = 1, 15, 29, 43, 57, 71, 85, 99, 113, 127, 141, 155, 169, 183, 197,
211, 225, 239, 254, 268, 283, 297, 312, 326, 341, 355, 370, 384, 399, 413, 428, 442, 457,
471, 486, 500). Key: vessel (white), empty, α, β.
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a.3.2.2 Temporal cell population evolution

Figure 45: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, α, β.

a.3.3 Discussion

We observe in Figure 43 and Figure 44 that the α and β cell populations die back to

near extinction at first, given the low basal concentrations of particles required for
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their fitness, and their high diffusion rates. Then some clusters of α and β cells form

by chance since they are near the vessel, and the local concentrations of particles ac-

cumulates to a point that surpasses their consumption rates, supporting proliferation

of both cell types simultaneously but not reciprocally. In Figure 45 we observe that

from generation 10 to 400, as the clusters separately begin to take over the space,

but prior to their fully populating the space, the α and β cell population sizes oscil-

late with no observable relationship to each other, as we expect from independent

growth. But the populations are of different proportions to the whole; as we expect,

the population of β is proportionally larger than that of α. What we did not expect

is that the two populations would grow at the same rate. After generation 400, the

population dynamics necessarily becomes zero-sum in character. By this time, the

two populations have converged at, and oscillate about, distinct mean sizes, and con-

tinue to coexist indefinitely—something else we did not expect. Notice the significant

difference in the two convergence times: symmetric mutual need is generation 175;

symmetric (and asymmetric) fitness with one vessel is generation 400.

a.4 oxidative phosphorylation vs aerobic glycolysis (2d)

a.4.1 Setup

In this simulation, we have oxidative phosphorylation and aerobic glycolysis cells, repre-

senting a typical Warburg effect [151, 150] mixed population. We have glucose (glu),

oxygen (O2), and lactate (lac). Oxidative phosphorylation is governed by 1glu+ 6O2 →
4CO2 + 4H2O+ 36ATP. Accordingly, oxidative phosphorylation cells consume glu and

O2 in a rate ratio of 1:6. Aerobic glycolysis is governed by 1glu → 2lac+ 2ATP. Accord-
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ingly, aerobic glycolysis cells consume glu and release lac in a rate ratio of 1:2. Since we

assume aerobic glycolysis proceeds 100 times faster than oxidative phosphorylation,

then aerobic glycolysis and aerobic glycolysis cells consume glu in a rate ratio of 1:100.

In this way we implement the basic stoichiometry of the two metabolic phenotypes,

taken together. In terms of particles and fitness, glu and O2 positively impact to a

large extent, and lac negatively impacts to a negligible extent, the fitness of oxidative

phosphorylation cells; and glu positively impacts to a large extent the fitness of aerobic

glycolysis cells (but to a lesser extent than with oxidative phosphorylation cells). Both

cell types are replaceable and reproductive. The specific quantities mentioned here

are given in the tables below.

a.4.1.1 Configuration parameters

glu O2 lac

1 1 1

Table 35: Diffusion rate of each particle type.

glu O2 lac

0 0 0.01

Table 36: Initial concentration of each particle type.
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cell type glu O2 lac

vessel 0.1 0.1 0
empty 0.1 0.1 0
oxidative phosphorylation 0.1 0.1 0
aerobic glycolysis 0.1 0.1 0

Table 37: Basal lower-bound concentration of each particle type by cell type.

cell type glu O2 lac

vessel ∞ ∞ ∞
empty ∞ ∞ ∞
oxidative phosphorylation ∞ ∞ ∞
aerobic glycolysis ∞ ∞ ∞

Table 38: Basal upper-bound concentration of each particle type by cell type.

cell type glu O2 lac

vessel 0 0 0
empty 0 0 0
oxidative phosphorylation 0.01 0.06 0
aerobic glycolysis 1.0 0 0

Table 39: Consumption rate of each particle type by cell type.

cell type glu O2 lac

vessel 0 0 0
empty 0 0 0
oxidative phosphorylation 0 0 0
aerobic glycolysis 0 0 2.0

Table 40: Release rate for of particle type by cell type.
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cell type glu O2 lac

vessel 0 0 0
empty 0 0 0
oxidative phosphorylation 3.0 3.0 -0.1
aerobic glycolysis 2.8 0 0

Table 41: Impact factor of each particle type upon each cell type.

cell type replaceable?
vessel No
empty Yes
oxidative phosphorylation Yes
aerobic glycolysis Yes

Table 42: Replaceable predicate of each cell type.

cell type reproductive?
vessel No
empty Yes
oxidative phosphorylation Yes
aerobic glycolysis Yes

Table 43: Reproductive predicate of each cell type.

a.4.1.2 Initial conditions

The simulation opens with the initial concentrations of glu and O2 set to zero, and

lac set to a negligible amount—otherwise, if it too were set to zero, then given the

nature of how our simulation computes particle concentrations after cellular con-

sumption and release, it would remain zero throughout the simulation—as specified

in Table 36, and lower-bounded basal concentrations of glu and O2, as specified in
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Table 37. These diffuse with rates specified in Table 35. We initialize the 2D lattice

with a random mixture of empty, oxidative phosphorylation, and aerobic glycolysis cells.
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a.4.2 Results

a.4.2.1 Spatial cell population evolution

Figure 46: Time evolution of cell populations. Left-to-right, top-to-bottom: 100 generations
shown in 36 frames (t = 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49,
52, 55, 58, 61, 64, 67, 70, 73, 75, 78, 80, 83, 85, 88, 90, 93, 95, 98, 100). Key: empty,
oxidative phosphorylation, aerobic glycolysis.

179



appendices

Figure 47: Time evolution of cell populations. Left-to-right, top-to-bottom: 36 generations
shown in 36 frames (t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36). Key: empty, oxidative
phosphorylation, aerobic glycolysis.
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a.4.2.2 Temporal cell population evolution

Figure 48: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, oxidative phosphorylation, aerobic glycolysis.

a.4.3 Discussion

We observe in Figure 46 and Figure 47 that the oxidative phosphorylation and aerobic gly-

colysis cell populations immediately grow to cover most of the space, with oxidative
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phosphorylation cells dominating initially due to higher mean fitness. However, the

clusters of aerobic glycolysis cells which gain a foothold quickly release enough lac

into their locales to eliminate their local oxidative phosphorylation competitors due to

the negative impact of lac on oxidative phosphorylation fitness. As lac diffuses, this ef-

fect is increasingly widespread, until in short order all of the oxidative phosphorylation

cells are eliminated in a situation that resembles acidosis. In Figure 48 we observe

that from generation 15 onward, the mean size of the aerobic glycolysis cell population

is constant. What interests us is that this mean population size is noticeably lower

than it is from generations 1 to 15. Why would the aerobic glycolysis cell population

size go down precisely when their oxidative phosphorylation competitors went extinct?

Notice that at this point (generation 15), there is an increase in variance in the neigh-

borhood fitness of the aerobic glycolysis cell population. Perhaps since so much of the

area was covered by slower glu-consuming oxidative phosphorylation cells, and then

these were rapidly eliminated, the aerobic glycolysis cells were no longer kept apart

from each other, and would thereby raid each other’s local sources of glu (depleting

at each iteration the basal glu concentration), and so suffer a mean fitness decrease.

There is something more to be said for the sheer bulk of cell clustering, even mixed

type clustering, in that perhaps aerobic glycolysis cells competed better against oxida-

tive phosphorylation cells (which surrounded them prior to oxidative phosphorylation

type extinction) than empty cells (which surrounded them after this extinction).
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a.5 oxidative phosphorylation vs aerobic glycolysis with one ves-

sel (2d)

a.5.1 Setup

In this simulation, we have two cell types, oxidative phosphorylation and aerobic gly-

colysis, that correspond to cancer cells that use oxidative phosphorylation and aerobic

glycolysis, respectively, representing a typical Warburg effect [151, 150] mixed pop-

ulation. Particle types 1, 2, and 3 correspond to glucose (glu), oxygen (O2), and

lactate (lac), respectively. Oxidative phosphorylation is governed by 1glu + 6O2 →
4CO2 + 4H2O+ 36ATP. Accordingly, oxidative phosphorylation cells consume glu and

O2 in a rate ratio of 1:6. Aerobic glycolysis is governed by 1glu → 2lac+ 2ATP. Accord-

ingly, aerobic glycolysis cells consume glu and release lac in a rate ratio of 1:2. Since

we assume aerobic glycolysis proceeds 100 times faster than oxidative phosphorylation,

then oxidative phosphorylation and aerobic glycolysis consume glu in a rate ratio of 1:100.

In this way we implement the basic stoichiometry of the two metabolic phenotypes,

taken together. In terms of particles and fitness, glu and O2 positively impact to a

large extent, and lac negatively impacts to a negligible extent, the fitness of oxidative

phosphorylation cells; and glu positively impacts to a large extent the fitness of aerobic

glycolysis cells (but to a lesser extent than with oxidative phosphorylation cells). The one

vessel that extends down from the top-middle consumes lac and releases glu and O2.

Both cell types are replaceable and reproductive. The specific quantities mentioned

here are given in the tables below.
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a.5.1.1 Configuration parameters

glu O2 lac

1 1 1

Table 44: Diffusion rate of each particle type.

glu O2 lac

0 0 0.01

Table 45: Initial concentration of each particle type.

cell type glu O2 lac

vessel 0.1 0.1 0
empty 0.1 0.1 0
oxidative phosphorylation 0.1 0.1 0
aerobic glycolysis 0.1 0.1 0

Table 46: Basal lower-bound concentration of each particle type by cell type.

cell type glu O2 lac

vessel ∞ ∞ ∞
empty ∞ ∞ ∞
oxidative phosphorylation ∞ ∞ ∞
aerobic glycolysis ∞ ∞ ∞

Table 47: Basal upper-bound concentration of each particle type by cell type.
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cell type glu O2 lac

vessel 0 0 1.0
empty 0 0 0
oxidative phosphorylation 0.01 0.06 0
aerobic glycolysis 1.0 0 0

Table 48: Consumption rate of each particle type by cell type.

cell type glu O2 lac

vessel 1.0 1.0 0
empty 0 0 0
oxidative phosphorylation 0 0 0
aerobic glycolysis 0 0 2.0

Table 49: Release rate for of particle type by cell type.

cell type glu O2 lac

vessel 0 0 0
empty 0 0 0
oxidative phosphorylation 3.0 3.0 -0.1
aerobic glycolysis 2.8 0 0

Table 50: Impact factor of each particle type upon each cell type.

cell type replaceable?
vessel No
empty Yes
oxidative phosphorylation Yes
aerobic glycolysis Yes

Table 51: Replaceable predicate of each cell type.
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cell type reproductive?
vessel No
empty Yes
oxidative phosphorylation Yes
aerobic glycolysis Yes

Table 52: Reproductive predicate of each cell type.

a.5.1.2 Initial conditions

The simulation opens with the initial concentrations of glu and O2 set to zero, and

lac set to a negligible amount—otherwise, if it too were set to zero, then given the

nature of how our simulation computes particle concentrations after cellular con-

sumption and release, it would remain zero throughout the simulation—as specified

in Table 36, and lower-bounded basal concentrations of glu and O2, as specified in

Table 37. These diffuse with rates specified in Table 35. We initialize the 2D lattice

with a random mixture of empty, oxidative phosphorylation, and aerobic glycolysis cells,

and place one vessel extending down from the top-middle.

186



appendices

a.5.2 Results

a.5.2.1 Spatial cell population evolution

Figure 49: Time evolution of cell populations. Left-to-right, top-to-bottom: 100 generations
shown in 36 frames (t = 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52,
55, 58, 61, 64, 67, 70, 73, 75, 78, 80, 83, 85, 88, 90, 93, 95, 98, 100). Key: vessel (white),
empty, oxidative phosphorylation, aerobic glycolysis.
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Figure 50: Time evolution of cell populations. Left-to-right, top-to-bottom: 36 generations
shown in 36 frames (t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36). Key: vessel (white),
empty, oxidative phosphorylation, aerobic glycolysis.
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a.5.2.2 Temporal cell population evolution

Figure 51: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, oxidative phosphorylation, aerobic glycolysis.

a.5.3 Discussion

We observe in Figure 46 and Figure 47 that the oxidative phosphorylation and aerobic gly-

colysis cell populations immediately grow to cover most of the space, with oxidative
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phosphorylation cells dominating initially due to higher mean fitness. However, the

clusters of aerobic glycolysis cells which gain a foothold quickly release enough lac

into their locales to eliminate their local oxidative phosphorylation competitors due to

the negative impact of lac on oxidative phosphorylation fitness. As lac diffuses, this ef-

fect is increasingly widespread, until in short order all of the oxidative phosphorylation

cells are eliminated in a situation that resembles acidosis. However, since the vessel

consumes the local lac, we observe an expected clustering of oxidative phosphorylation

cells directly around the vessel. These are temporarily “rescued” from the ensuing

acidosis, but eventually succumb like the others. In effect, the vessel’s removal of

waste product only postpones the inevitable oxidative phosphorylation type extinction.

In Figure 48 we observe that from generation 15 onward, the mean size of the aerobic

glycolysis cell population is constant. What interests us is that this mean population

size is noticeably lower than it is from generations 1 to 15. Why would the aerobic

glycolysis cell population size go down precisely when their oxidative phosphorylation

competitors went extinct? Notice that at this point (generation 15), there is an in-

crease in variance in the neighborhood fitness of the aerobic glycolysis cell population.

Perhaps since so much of the area was covered by slower glu-consuming oxidative

phosphorylation cells, and then these were rapidly eliminated, the aerobic glycolysis

cells were no longer kept apart from each other, and would thereby raid each other’s

local sources of glu (depleting at each iteration the basal glu concentration), and so

suffer a mean fitness decrease. There is something more to be said for the sheer bulk

of cell clustering, even mixed type clustering, in that perhaps aerobic glycolysis cells

competed better against oxidative phosphorylation cells (which surrounded them prior

to oxidative phosphorylation type extinction) than empty cells (which surrounded them

after this extinction).
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a.6 metabolic symbiosis (2d)

hypoxic tumor cell

glucose

lactate

GLUT1

MCT4

O2

pyruvate

lactate

lactate

glucose

aerobic tumor cell

MCT1

pyruvate

CO2 + H2O + 18 ATP

lactate

blood vessel

oxygenglucose

lactateoxygenglucose

poorly oxygenated
tumor cells

well-oxygenated
tumor cells

Figure 52: A schematic view of the “metabolic symbiosis” [128, 136] between hypoxic and
aerobic tumor cells, where lactate produced by hypoxic cells is taken up by aerobic
cells, which use it as their principal substrate for oxidative phosphorylation. The
two cell types thereby mutually regulate their access to energy metabolites. Note
the orientation of glucose, oxygen, and lactate gradients with respect to the blood
vessel at the bottom.
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a.6.1 Setup

In this simulation, we have hypoxic and aerobic tumor cells in the “metabolic symbio-

sis” scenario illustrated in Figure 52. We have glucose (glu), oxygen (O2), and lactate

(lac) particles. Hypoxic cells consume glu at a certain rate, and release lac at the same

rate. Aerobic cells consume O2 and lac at the same rate, and release no particles. In

terms of particles and fitness, glu positively impacts the fitness of hypoxic cells; and

O2 and lac positively impact the fitness of aerobic cells. All rates and impacts are

the same quantities for the two cell types. The one vessel that extends along the bot-

tom row consumes lac and releases glu and O2. Both cell types are replaceable and

reproductive. The specific quantities mentioned here are given in the tables below.

a.6.1.1 Configuration parameters

glu O2 lac

1 1 1

Table 53: Diffusion rate of each particle type.

glu O2 lac

0 0 0.01

Table 54: Initial concentration of each particle type.
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cell type glu O2 lac

vessel 0.1 0.1 0
empty 0.1 0.1 0
hypoxic 0.1 0.1 0
aerobic 0.1 0.1 0

Table 55: Basal lower-bound concentration of each particle type by cell type.

cell type glu O2 lac

vessel ∞ ∞ ∞
empty ∞ ∞ ∞
hypoxic ∞ ∞ ∞
aerobic ∞ ∞ ∞

Table 56: Basal upper-bound concentration of each particle type by cell type.

cell type glu O2 lac

vessel 0 0 10.0
empty 0 0 0
hypoxic 1.0 0 0
aerobic 0 1.0 1.0

Table 57: Consumption rate of each particle type by cell type.

cell type glu O2 lac

vessel 10.0 10.0 0
empty 0 0 0
hypoxic 0 0 1.0
aerobic 0 0 0

Table 58: Release rate for of particle type by cell type.
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cell type glu O2 lac

vessel 0 0 0
empty 0 0 0
hypoxic 1 0 0
aerobic 0 1 1

Table 59: Impact factor of each particle type upon each cell type.

cell type replaceable?
vessel No
empty Yes
hypoxic Yes
aerobic Yes

Table 60: Replaceable predicate of each cell type.

cell type reproductive?
vessel No
empty Yes
hypoxic Yes
aerobic Yes

Table 61: Reproductive predicate of each cell type.

a.6.1.2 Initial conditions

The simulation opens with the initial concentrations of glu and O2 set to zero, and

lac set to a negligible amount—otherwise, if it too were set to zero, then given the

nature of how our simulation computes particle concentrations after cellular con-

sumption and release, it would remain zero throughout the simulation—as specified

in Table 54, and lower-bounded basal concentrations of glu and O2, as specified in
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Table 55. These diffuse with rates specified in Table 53. We initialize the 2D lattice

with the top half hypoxic cells, the bottom half aerobic cells, and place one vessel that

extends along the bottom row.
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a.6.2 Results

a.6.2.1 Spatial cell population evolution

Figure 53: Time evolution of cell populations. Left-to-right, top-to-bottom: 210 generations
shown in 36 frames (t = 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97,
103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205,
210). Key: vessel (white), empty, hypoxic, aerobic cells.
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Figure 54: Time evolution of cell populations. Left-to-right, top-to-bottom: 60 generations
shown in 36 frames (t = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30, 32,
33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60). Key: vessel
(white), empty, hypoxic, aerobic cells.
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a.6.2.2 Temporal cell population evolution

Figure 55: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, hypoxic, aerobic cells.

a.6.3 Discussion

We observe in Figure 53 and Figure 54 that the hypoxic and aerobic cell populations im-

mediately begin to mix at their horizontal interface. Then a thick horizontal layer of
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aerobic cells pulls away and migrates upward; transiently, it appears that the popula-

tions of hypoxic and aerobic cells have swapped positions. Then a thick horizontal layer

of aerobic cells pulls away and migrates downward. This inversion and pull-away mi-

gration repeats at successively smaller length scales, all the while maintaining its near

perfect horizontality, until the entire area is covered in a regular striation pattern: hor-

izontal, equal thickness layers of aerobic and hypoxic cells alternate from top to bottom.

This pattern is stable for the duration of the simulation, and perhaps indefinitely. In

Figure 55 we observe that since the two cell populations always fill the entire area,

their population dynamics is always zero-sum in character. From generation 10 to 50,

aerobic cells dominate; but from generation 50 onward, the two populations converge

at, and oscillate about, the same mean size. We expect neither the reaction-diffusion

[143] type emergent striation pattern nor the population size rebalancing.

199



appendices

a.7 tumor-stroma signaling (2d)

tumor
cell

fibroblast
cell

default
release(1,0.2)

(autocrine)

default
release(2,0.2)

(paracrine)

conditionally
release(3,0.2)

(paracrine)

conc(2) > 0.11
=>

consume(2,0.01),
release(3,0.2)

conc(3) > 0.11
=>

consume(3,0.01),
impact = +10.0

conc(1) > 0.11
=>

consume(1,0.01),
impact = +0.1

Figure 56: A schematic view of the tumor-stroma signaling described below, and quantified
in Table 67 and Table 71.

a.7.1 Setup

In this simulation, we have epithelial, fibroblast, tumor, and inert cells. Three particle

types play roles in the following scenario. In a middle of a row of epithelial cells, one of

them transforms into a tumor cell. The epithelial cells are separated from the fibroblast

cells as these are embedded in a thick layer of (inert) extracellular matrix. Proliferating

(tumor) cells (autocrine) signal themselves with particle type 1. When this reaches

a sufficient concentration, affected tumor cells begin consuming it and their fitness

increases. Simultaneously, tumor cells (paracrine) signal nearby fibroblast cells residing

in the (inert) extracellular matrix with particle type 2. When this reaches a sufficient

concentration, affected fibroblast cells begin consuming it and immediately releasing
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particle type 3. When this reaches a sufficient concentration, affected tumor cells begin

consuming it and their fitness increases by a substantial factor, above and beyond

that from its autocrine signaling. In this way, our conditional logic implements a

simple signaling and adaptation system between tumor and fibroblast cells, illustrated

schematically in Figure 56. By default, no cells consume particles, and only tumor

tumor cells release particle types 1 and 2 at the same rate, to kick off autocrine and

paracrine signaling, respectively. By default, no impact factors are defined; they are

only conditionally applied. Only empty cells are replaceable, and only tumor cells are

reproductive; the others are effectively inert. The specific quantities mentioned here

are given in the tables below.

a.7.1.1 Configuration parameters

pt 1 pt 2 pt 3
10 0.1 0.1

Table 62: Diffusion rate of each particle type.

pt 1 pt 2 pt 3
0.1 0.1 0.1

Table 63: Initial concentration of each particle type.
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cell type pt 1 pt 2 pt 3
vessel 0 0 0
empty 0 0 0
epithelial 0 0 0
fibroblast 0 0 0
tumor 0 0 0
inert 0 0 0

Table 64: Basal lower-bound concentration of each particle type by cell type.

cell type pt 1 pt 2 pt 3
vessel ∞ ∞ ∞
empty ∞ ∞ ∞
epithelial ∞ ∞ ∞
fibroblast ∞ ∞ ∞
tumor ∞ ∞ ∞
inert ∞ ∞ ∞

Table 65: Basal upper-bound concentration of each particle type by cell type.

cell type pt 1 pt 2 pt 3
vessel 0 0 0
empty 0 0 0
epithelial 0 0 0
fibroblast 0 0 0
tumor 0 0 0
inert 0 0 0

Table 66: Consumption rate of each particle type by cell type.
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cell type pt 1 pt 2 pt 3
vessel 0 0 0
empty 0 0 0
epithelial 0 0 0
fibroblast 0 0 0
tumor 0.2 0.2 0
inert 0 0 0

Table 67: Release rate for of particle type by cell type.

cell type pt 1 pt 2 pt 3
vessel 0 0 0
empty 0 0 0
epithelial 0 0 0
fibroblast 0 0 0
tumor 0 0 0
inert 0 0 0

Table 68: Impact factor of each particle type upon each cell type.

cell type replaceable?
vessel No
empty Yes
epithelial No
fibroblast No
tumor No
inert No

Table 69: Replaceable predicate of each cell type.
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cell type reproductive?
vessel No
empty Yes
epithelial No
fibroblast No
tumor Yes
inert No

Table 70: Reproductive predicate of each cell type.

cell type triggers actions
fibroblast ρ2 > 0.11 cfibroblast,2 ← 0.01, rfibroblast,3 ← 0.2

tumor ρ1 > 0.11 ctumor,1 ← 0.01, σtumor,1 ← 0.1

tumor ρ3 > 0.11 ctumor,3 ← 0.01, σtumor,3 ← 10

Table 71: Conditional triggers and actions for those cell types so configured.

a.7.1.2 Initial conditions

The simulation opens with the initial concentrations of particle types 1, 2, and 3 set

to the same value, as specified in Table 63, with no lower- or upper-bounded basal

concentrations set. These diffuse with rates specified in Table 62. We initialize the 2D

lattice with a horizontal monolayer of epithelial cells, located about two-thirds down

from the top, in the middle of which we place a single tumor cell. Below this, we lay

down a thick layer of sub-epithelial (inert) extracellular matrix. Within this layer, we

place a random scattering of fibroblast cells such that their density increases nonlin-

early in a rightward direction—this amounts in most of the fibroblast cells populating

the rightmost third of the area.
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a.7.2 Results

a.7.2.1 Spatial cell population evolution

Figure 57: Time evolution of cell populations. Left-to-right, top-to-bottom: 440 generations
shown in 36 frames (t = 1, 14, 27, 40, 53, 65, 78, 90, 103, 115, 128, 140, 153, 165, 178,
190, 203, 215, 228, 240, 253, 265, 278, 290, 303, 315, 328, 340, 353, 365, 378, 390, 403,
415, 428, 440). Key: vessel (white), empty, epithelial, fibroblast, tumor, inert.

205



appendices

Figure 58: Time evolution of cell populations. Left-to-right, top-to-bottom: 260 generations
shown in 36 frames (t = 1, 8, 15, 22, 29, 36, 43, 50, 58, 65, 73, 80, 88, 95, 103, 110,
118, 125, 133, 140, 148, 155, 163, 170, 178, 185, 193, 200, 208, 215, 223, 230, 238, 245,
253, 260). Key: vessel (white), empty, epithelial, fibroblast, tumor, inert.
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a.7.2.2 Temporal cell population evolution

Figure 59: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, epithelial, fibroblast, tumor, inert.

a.7.3 Discussion

We observe in Figure 57 and Figure 58 that tumor cell proliferation is very slow at first,

as the autocrine signaling causes only a small increase in affected tumor cell fitness. It
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is not until much later, when fibroblast paracrine signaling reaches the tumor cells that

their proliferation becomes noticeable, due to the consequent much higher fitness

impact on the affected tumor cells, and they eventually take over the replaceable

area. Notice that this faster growth moves in a decidedly rightward direction, toward

the source of the signaling gradient, the rightwardly dense fibroblast cells. After a

fashion, radial outward growth dominates and the tumor contour becomes circular.

In Figure 59 we observe linear growth in the tumor population size from generation

145 to 155, then exponential growth from generation 155 to 250, where the population

size saturates at the full replaceable area.

a.8 apoptotic core (2d)

a.8.1 Setup

In this simulation, we have non-replaceable and reproductive tumor cells. The tu-

mor consume O2 at a certain rate, and release no particles. The conditional logic

implements tumor cell apoptosis wherever O2 falls below a threshold. The specific

quantities mentioned here are given in the tables below.

a.8.1.1 Configuration parameters

O2

0.01

Table 72: Diffusion rate of each particle type.
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O2

0.1

Table 73: Initial concentration of each particle type.

cell type O2

vessel 0
empty 0
tumor 0

Table 74: Basal lower-bound concentration of each particle type by cell type.

cell type O2

vessel ∞
empty ∞
tumor ∞

Table 75: Basal upper-bound concentration of each particle type by cell type.

cell type O2

vessel 0
empty 0
tumor 0.01

Table 76: Consumption rate of each particle type by cell type.

cell type O2

vessel 0
empty 0
tumor 0

Table 77: Release rate for of particle type by cell type.
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cell type O2

vessel 0
empty 0
tumor 1

Table 78: Impact factor of each particle type upon each cell type.

cell type replaceable?
vessel No
empty Yes
tumor No

Table 79: Replaceable predicate of each cell type.

cell type reproductive?
vessel No
empty Yes
tumor Yes

Table 80: Reproductive predicate of each cell type.

cell type triggers actions
tumor ρ1 < 0.05 apoptosis

Table 81: Conditional triggers and actions for those cell types so configured.

a.8.1.2 Initial conditions

The simulation opens with the initial concentration of O2 specified in Table 73. This

diffuses with a rate specified in Table 72. We initialize the 2D lattice with empty cells,

and we place one tumor cell in the center.
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a.8.2 Results

a.8.2.1 Spatial cell population evolution

Figure 60: Time evolution of cell populations. Left-to-right, top-to-bottom: 200 generations
shown in 36 frames (t = 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 90, 96,
101, 107, 112, 118, 123, 129, 134, 140, 145, 151, 156, 162, 167, 173, 178, 184, 189, 195,
200). Key: empty, tumor.
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a.8.2.2 Temporal cell population evolution

Figure 61: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, tumor.

a.8.3 Discussion

We observe the following sequence of events in Figure 60. Tumor cells proliferate

radially outward from the center. Once most of the area is covered with tumor cells,
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then empty cells appear in the center—where tumor cells have undergone apoptosis.

Empty cells grow radially outward at a similar rate to the tumor cells just beyond

them. We observe the succession of tumor → empty cell populations in Figure 61. The

decay of tumor cell populations is due to their proliferating outside of the spatial

dimensions of the simulation while simultaneously being replaced by the succeeding

population. By generation 200, empty cells have taken over the area.

a.9 necrotic core (2d)

a.9.1 Setup

In this simulation, we have viable, hypoxic, and necrotic tumor cells that correspond to

those we see in the anti-pimonidazole stain images. The viable and hypoxic cells con-

sume O2 at a certain rate, and release no particles. The conditional logic implements

a simple state machine in the following way. Wherever O2 falls below a threshold,

viable cells become (“jump” to) hypoxic cells—identical in every way except as fol-

lows. Wherever O2 rises above that threshold, hypoxic cells become viable again; and

wherever O2 falls below an even lower threshold, hypoxic cells become necrotic cells.

Once a cell becomes necrotic it has entered an absorbing state and its behavior is com-

pletely inert: it has no consumption or release profile, and it is neither replaceable nor

reproductive. The specific quantities mentioned here are given in the tables below.
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a.9.1.1 Configuration parameters

O2

0.1

Table 82: Diffusion rate of each particle type.

O2

0.1

Table 83: Initial concentration of each particle type.

cell type O2

vessel 0
empty 0
viable 0
hypoxic 0
necrotic 0

Table 84: Basal lower-bound concentration of each particle type by cell type.

cell type O2

vessel ∞
empty ∞
viable ∞
hypoxic ∞
necrotic ∞

Table 85: Basal upper-bound concentration of each particle type by cell type.
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cell type O2

vessel 0
empty 0
viable 0.01
hypoxic 0.01
necrotic 0

Table 86: Consumption rate of each particle type by cell type.

cell type O2

vessel 0.2
empty 0
viable 0
hypoxic 0
necrotic 0

Table 87: Release rate for of particle type by cell type.

cell type O2

vessel 0
empty 0
viable 1
hypoxic 1
necrotic 0

Table 88: Impact factor of each particle type upon each cell type.
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cell type replaceable?
vessel No
empty Yes
viable No
hypoxic No
necrotic No

Table 89: Replaceable predicate of each cell type.

cell type reproductive?
vessel No
empty Yes
viable Yes
hypoxic Yes
necrotic No

Table 90: Reproductive predicate of each cell type.

cell type triggers actions
viable ρ1 < 0.07 jump to hypoxic
hypoxic ρ1 < 0.05 jump to necrotic
hypoxic ρ1 > 0.07 jump to viable

Table 91: Conditional triggers and actions for those cell types so configured.

a.9.1.2 Initial conditions

The simulation opens with the initial concentration of O2 specified in Table 83. This

diffuses with a rate specified in Table 82. We initialize the 2D lattice with empty cells,

and we place one viable cell in the center.
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a.9.2 Results

a.9.2.1 Spatial cell population evolution

Figure 62: Time evolution of cell populations. Left-to-right, top-to-bottom: 170 generations
shown in 36 frames (t = 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86,
91, 96, 101, 106, 111, 116, 121, 125, 130, 134, 139, 143, 148, 152, 157, 161, 166, 170).
Key: empty, viable, hypoxic, necrotic.
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a.9.2.2 Temporal cell population evolution

Figure 63: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, viable, hypoxic, necrotic.

a.9.3 Discussion

We observe the following sequence of events in Figure 62. Viable cells proliferate ra-

dially outward from the center. Once most of the area is covered with viable cells,
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then hypoxic cells appear in the center. Hypoxic cells grow radially outward at a sim-

ilar rate to the viable cells just beyond them. Once about half of the area is covered

with hypoxic cells, then necrotic cells appear in the center. Necrotic cells grow radially

outward at a similar rate to the hypoxic and viable cells just beyond them. We ob-

serve the succession of viable → hypoxic → necrotic cell populations in Figure 63. The

decay of viable and hypoxic cell populations is due to their proliferating outside of

the spatial dimensions of the simulation while simultaneously being replaced by the

succeeding population. Since necrotic cells cannot be replaced, their population size

monotonically increases. By generation 160, necrotic cells have taken over the area.

a.10 stable local hypoxia with two vessels (2d)

a.10.1 Setup

In this simulation, we have viable, hypoxic, and necrotic tumor cells that correspond to

those we see in the anti-pimonidazole stain images. The viable and hypoxic cells con-

sume O2 at a certain rate, and release no particles. The conditional logic implements

a simple state machine in the following way. Wherever O2 falls below a threshold,

viable cells become (“jump” to) hypoxic cells—identical in every way except as fol-

lows. Wherever O2 rises above that threshold, hypoxic cells become viable again; and

wherever O2 falls below an even lower threshold, hypoxic cells become necrotic cells.

Once a cell becomes necrotic it has entered an absorbing state and its behavior is com-

pletely inert: it has no consumption or release profile, and it is neither replaceable nor

reproductive. The specific quantities mentioned here are given in the tables below.
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a.10.1.1 Configuration parameters

O2

0.1

Table 92: Diffusion rate of each particle type.

O2

0.1

Table 93: Initial concentration of each particle type.

cell type O2

vessel 0
empty 0
viable 0
hypoxic 0
necrotic 0

Table 94: Basal lower-bound concentration of each particle type by cell type.

cell type O2

vessel ∞
empty ∞
viable ∞
hypoxic ∞
necrotic ∞

Table 95: Basal upper-bound concentration of each particle type by cell type.
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cell type O2

vessel 0
empty 0
viable 0.01
hypoxic 0.01
necrotic 0

Table 96: Consumption rate of each particle type by cell type.

cell type O2

vessel 0.2
empty 0
viable 0
hypoxic 0
necrotic 0

Table 97: Release rate for of particle type by cell type.

cell type O2

vessel 0
empty 0
viable 1
hypoxic 1
necrotic 0

Table 98: Impact factor of each particle type upon each cell type.

221



appendices

cell type replaceable?
vessel No
empty Yes
viable No
hypoxic No
necrotic No

Table 99: Replaceable predicate of each cell type.

cell type reproductive?
vessel No
empty Yes
viable Yes
hypoxic Yes
necrotic No

Table 100: Reproductive predicate of each cell type.

cell type triggers actions
viable ρ1 < 0.07 jump to hypoxic
hypoxic ρ1 < 0.05 jump to necrotic
hypoxic ρ1 > 0.07 jump to viable

Table 101: Conditional triggers and actions for those cell types so configured.

a.10.1.2 Initial conditions

The simulation opens with the initial concentration of O2 specified in Table 93. This

diffuses with a rate specified in Table 92. We initialize the 2D lattice with empty

cells; we place one viable cell in the center, and two vessels, one mid-way along the

diagonal from the center to the SW corner, the other mid-way along the diagonal
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from the center to the NE corner. Vessels consume no particles and release O2 at the

rate specified in Table 97.
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a.10.2 Results

a.10.2.1 Spatial cell population evolution

Figure 64: Time evolution of cell populations. Left-to-right, top-to-bottom: 1000 generations
shown in 36 frames (t = 1, 30, 59, 88, 117, 145, 174, 202, 231, 259, 288, 316, 345, 373,
402, 430, 459, 487, 516, 544, 573, 601, 630, 658, 687, 715, 744, 772, 801, 829, 858, 886,
915, 943, 972, 1000). Key: vessel (white), empty, viable, hypoxic, necrotic.
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Figure 65: Time evolution of cell populations. Left-to-right, top-to-bottom: 350 generations
shown in 36 frames (t = 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141,
151, 161, 171, 181, 191, 201, 211, 221, 231, 241, 251, 261, 271, 281, 291, 301, 311, 321,
331, 341, 350). Key: vessel (white), empty, viable, hypoxic, necrotic.
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a.10.2.2 Temporal cell population evolution

Figure 66: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, viable, hypoxic, necrotic.

a.10.3 Discussion

We observe the following sequence of events in Figure 64 and Figure 65. Viable cells

proliferate radially outward from the center. Once most of the area is covered with vi-
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able cells, then hypoxic cells appear in the center. Hypoxic cells grow radially outward

at a similar rate to the viable cells just beyond them. They approach vessels (sur-

rounded by viable cells) up to some radial distance away from each vessel, the zone

into which O2 diffuses with a sufficient concentration to maintain viable cells. Once

about half of the area is covered with hypoxic cells, then necrotic cells appear in the

center. Necrotic cells grow radially outward at a similar rate to the hypoxic and viable

cells just beyond them. They approach vessels (surrounded by concentrically situated

viable and hypoxic cells) up to some radial distance away from each vessel, the zone

into which O2 diffuses with a sufficient concentration to maintain viable and hypoxic

cells. We eventually observe islands of concentrically situated viable and hypoxic cells,

surrounded by a sea of necrotic cells, similar to what we see in the anti-pimonidazole

stain images. This arrangement is stable for awhile, before the imbalance of three fac-

tors related to O2—diffusion rate (Table 92), vessel release rate (Table 97), and viable

and hypoxic consumption rate (Table 96)—allow O2 concentration to climb out of con-

trol, and eventually convert all of the hypoxic cells back into viable cells. We observe

the succession of viable → hypoxic → necrotic cell populations in Figure 66. The initial

decay of viable and hypoxic cell populations is due to their proliferating outside of

the spatial dimensions of the simulation while simultaneously being replaced by the

succeeding population. Since necrotic cells cannot be replaced, their population size

monotonically increases. Beginning at generation 200 and continuing to the end of

the simulation, the growth in the viable cell population at the expense of the hypoxic

cell population occurs for the reasons just discussed.
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a.11 stable local hypoxia with many vessels (2d)

a.11.1 Setup

In this simulation, we have viable, hypoxic, and necrotic tumor cells that correspond to

those we see in the anti-pimonidazole stain images. The viable and hypoxic cells con-

sume O2 at a certain rate, and release no particles. The conditional logic implements

a simple state machine in the following way. Wherever O2 falls below a threshold,

viable cells become (“jump” to) hypoxic cells—identical in every way except as fol-

lows. Wherever O2 rises above that threshold, hypoxic cells become viable again; and

wherever O2 falls below an even lower threshold, hypoxic cells become necrotic cells.

Once a cell becomes necrotic it has entered an absorbing state and its behavior is com-

pletely inert: it has no consumption or release profile, and it is neither replaceable nor

reproductive. The specific quantities mentioned here are given in the tables below.

a.11.1.1 Configuration parameters

O2

0.12

Table 102: Diffusion rate of each particle type.

O2

0.1

Table 103: Initial concentration of each particle type.
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cell type O2

vessel 0
empty 0
viable 0
hypoxic 0
necrotic 0

Table 104: Basal lower-bound concentration of each particle type by cell type.

cell type O2

vessel ∞
empty ∞
viable ∞
hypoxic ∞
necrotic ∞

Table 105: Basal upper-bound concentration of each particle type by cell type.

cell type O2

vessel 0
empty 0
viable 0.01
hypoxic 0.01
necrotic 0

Table 106: Consumption rate of each particle type by cell type.
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cell type O2

vessel 0.2
empty 0
viable 0
hypoxic 0
necrotic 0

Table 107: Release rate for of particle type by cell type.

cell type O2

vessel 0
empty 0
viable 1
hypoxic 1
necrotic 0

Table 108: Impact factor of each particle type upon each cell type.

cell type replaceable?
vessel No
empty Yes
viable No
hypoxic No
necrotic No

Table 109: Replaceable predicate of each cell type.
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cell type reproductive?
vessel No
empty Yes
viable Yes
hypoxic Yes
necrotic No

Table 110: Reproductive predicate of each cell type.

cell type triggers actions
viable ρ1 < 0.07 jump to hypoxic
hypoxic ρ1 < 0.05 jump to necrotic
hypoxic ρ1 > 0.07 jump to viable

Table 111: Conditional triggers and actions for those cell types so configured.

a.11.1.2 Initial conditions

The simulation opens with the initial concentration of O2 specified in Table 103. This

diffuses with a rate specified in Table 102. We initialize the 2D lattice with empty cells;

we place one viable cell in the center, and 10 vessels randomly about. Vessels consume

no particles and release O2 at the rate specified in Table 107.
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a.11.2 Results

a.11.2.1 Spatial cell population evolution

Figure 67: Time evolution of cell populations. Left-to-right, top-to-bottom: 1000 generations
shown in 36 frames (t = 1, 30, 59, 88, 117, 145, 174, 202, 231, 259, 288, 316, 345, 373,
402, 430, 459, 487, 516, 544, 573, 601, 630, 658, 687, 715, 744, 772, 801, 829, 858, 886,
915, 943, 972, 1000). Key: vessel (white), empty, viable, hypoxic, necrotic.
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Figure 68: Time evolution of cell populations. Left-to-right, top-to-bottom: 220 generations
shown in 36 frames (t = 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97,
103, 110, 116, 123, 129, 136, 142, 149, 155, 162, 168, 175, 181, 188, 194, 201, 207, 214,
220). Key: vessel (white), empty, viable, hypoxic, necrotic.
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a.11.2.2 Temporal cell population evolution

Figure 69: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, viable, hypoxic, necrotic.

a.11.3 Discussion

We observe the following sequence of events in Figure 67 and Figure 68. Viable cells

proliferate radially outward from the center. Once most of the area is covered with vi-
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able cells, then hypoxic cells appear in the center. Hypoxic cells grow radially outward

at a similar rate to the viable cells just beyond them. They approach vessels (sur-

rounded by viable cells) up to some radial distance away from each vessel, the zone

into which O2 diffuses with a sufficient concentration to maintain viable cells. Once

about half of the area is covered with hypoxic cells, then necroic cells appear in the

center. Necrotic cells grow radially outward at a similar rate to the hypoxic and viable

cells just beyond them. They approach vessels (surrounded by concentrically situated

viable and hypoxic cells) up to some radial distance away from each vessel, the zone

into which O2 diffuses with a sufficient concentration to maintain viable and hypoxic

cells. We eventually observe islands of concentrically situated viable and hypoxic cells,

surrounded by a sea of necrotic cells, similar to what we see in the anti-pimonidazole

stain images. This arrangement is stable for awhile, before the imbalance of three

factors related to O2—diffusion rate (Table 102), vessel release rate (Table 107), and

viable and hypoxic consumption rate (Table 106)—allow O2 concentration to climb out

of control, at least in certain locales where random vessels may be close together,

and eventually convert all of the hypoxic cells back into viable cells. We observe the

succession of viable → hypoxic → necrotic cell populations in Figure 69. The initial

decay of viable and hypoxic cell populations is due to their proliferating outside of

the spatial dimensions of the simulation while simultaneously being replaced by the

succeeding population. Since necrotic cells cannot be replaced, their population size

monotonically increases. Beginning at generation 200 and continuing to the end of

the simulation, the growth in the viable cell population at the expense of the hypoxic

cell population occurs for the reasons just discussed.
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a.12 necrotic core (3d)

a.12.1 Setup

In this simulation, we have viable, hypoxic, and necrotic tumor cells that correspond to

those we see in the anti-pimonidazole stain images. The viable and hypoxic cells con-

sume O2 at a certain rate, and release no particles. The conditional logic implements

a simple state machine in the following way. Wherever O2 falls below a threshold,

viable cells become (“jump” to) hypoxic cells—identical in every way except as fol-

lows. Wherever O2 rises above that threshold, hypoxic cells become viable again; and

wherever O2 falls below an even lower threshold, hypoxic cells become necrotic cells.

Once a cell becomes necrotic it has entered an absorbing state and its behavior is com-

pletely inert: it has no consumption or release profile, and it is neither replaceable nor

reproductive. The specific quantities mentioned here are given in the tables below.

a.12.1.1 Configuration parameters

O2

0.1

Table 112: Diffusion rate of each particle type.

O2

0.1

Table 113: Initial concentration of each particle type.
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cell type O2

vessel 0
empty 0
viable 0
hypoxic 0
necrotic 0

Table 114: Basal lower-bound concentration of each particle type by cell type.

cell type O2

vessel ∞
empty ∞
viable ∞
hypoxic ∞
necrotic ∞

Table 115: Basal upper-bound concentration of each particle type by cell type.

cell type O2

vessel 0
empty 0
viable 0.01
hypoxic 0.01
necrotic 0

Table 116: Consumption rate of each particle type by cell type.
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cell type O2

vessel 0.2
empty 0
viable 0
hypoxic 0
necrotic 0

Table 117: Release rate for of particle type by cell type.

cell type O2

vessel 0
empty 0
viable 1
hypoxic 1
necrotic 0

Table 118: Impact factor of each particle type upon each cell type.

cell type replaceable?
vessel No
empty Yes
viable No
hypoxic No
necrotic No

Table 119: Replaceable predicate of each cell type.
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cell type reproductive?
vessel No
empty Yes
viable Yes
hypoxic Yes
necrotic No

Table 120: Reproductive predicate of each cell type.

cell type triggers actions
viable ρ1 < 0.07 jump to hypoxic
hypoxic ρ1 < 0.05 jump to necrotic
hypoxic ρ1 > 0.07 jump to viable

Table 121: Conditional triggers and actions for those cell types so configured.

a.12.1.2 Initial conditions

The simulation opens with the initial concentration of O2 specified in Table 113. This

diffuses with a rate specified in Table 112. We initialize the 3D lattice with empty cells,

and we place one viable cell in the center.

239



appendices

a.12.2 Results

a.12.2.1 Spatial cell population evolution

Figure 70: Time evolution of cell populations on the plane z = 20. Left-to-right, top-to-bottom:
130 generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49,
53, 57, 60, 64, 67, 71, 74, 78, 81, 85, 88, 92, 95, 99, 102, 106, 109, 113, 116, 120, 123,
127, 130). Key: empty, viable, hypoxic, necrotic.
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Figure 71: Time evolution of local fitness for viable cells. Left-to-right, top-to-bottom: 130 gen-
erations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57,
60, 64, 67, 71, 74, 78, 81, 85, 88, 92, 95, 99, 102, 106, 109, 113, 116, 120, 123, 127, 130).
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Figure 72: Time evolution of local fitness for hypoxic cells. Left-to-right, top-to-bottom: 130
generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53,
57, 60, 64, 67, 71, 74, 78, 81, 85, 88, 92, 95, 99, 102, 106, 109, 113, 116, 120, 123, 127,
130).
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Figure 73: Time evolution of local fitness for necrotic cells. Left-to-right, top-to-bottom: 130
generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53,
57, 60, 64, 67, 71, 74, 78, 81, 85, 88, 92, 95, 99, 102, 106, 109, 113, 116, 120, 123, 127,
130).
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a.12.2.2 Temporal cell population evolution

Figure 74: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, viable, hypoxic, necrotic.

a.12.3 Discussion

We observe the following sequence of events in Figure 70, Figure 71, Figure 72, and

Figure 73. Viable cells proliferate radially outward from the center. Once most of the
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volume is covered with viable cells, then hypoxic cells appear in the center. Hypoxic

cells grow radially outward at a similar rate to the viable cells just beyond them. Once

about half of the volume is covered with hypoxic cells, then necrotic cells appear in the

center. Necrotic cells grow radially outward at a similar rate to the hypoxic and viable

cells just beyond them. We observe the succession of viable → hypoxic → necrotic cell

populations in Figure 74. The decay of viable and hypoxic cell populations is due to

their proliferating outside of the spatial dimensions of the simulation while simulta-

neously being replaced by the succeeding population. Since necrotic cells cannot be

replaced, their population size monotonically increases. By generation 120, necrotic

cells have taken over the volume.

a.13 stable local hypoxia with two vessels (3d)

a.13.1 Setup

In this simulation, we have viable, hypoxic, and necrotic tumor cells that correspond to

those we see in the anti-pimonidazole stain images. The viable and hypoxic cells con-

sume O2 at a certain rate, and release no particles. The conditional logic implements

a simple state machine in the following way. Wherever O2 falls below a threshold,

viable cells become (“jump” to) hypoxic cells—identical in every way except as fol-

lows. Wherever O2 rises above that threshold, hypoxic cells become viable again; and

wherever O2 falls below an even lower threshold, hypoxic cells become necrotic cells.

Once a cell becomes necrotic it has entered an absorbing state and its behavior is com-

pletely inert: it has no consumption or release profile, and it is neither replaceable nor

reproductive. The specific quantities mentioned here are given in the tables below.
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a.13.1.1 Configuration parameters

O2

0.1

Table 122: Diffusion rate of each particle type.

O2

0.1

Table 123: Initial concentration of each particle type.

cell type O2

vessel 0
empty 0
viable 0
hypoxic 0
necrotic 0

Table 124: Basal lower-bound concentration of each particle type by cell type.

cell type O2

vessel ∞
empty ∞
viable ∞
hypoxic ∞
necrotic ∞

Table 125: Basal upper-bound concentration of each particle type by cell type.
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cell type O2

vessel 0
empty 0
viable 0.01
hypoxic 0.01
necrotic 0

Table 126: Consumption rate of each particle type by cell type.

cell type O2

vessel 0.2
empty 0
viable 0
hypoxic 0
necrotic 0

Table 127: Release rate for of particle type by cell type.

cell type O2

vessel 0
empty 0
viable 1
hypoxic 1
necrotic 0

Table 128: Impact factor of each particle type upon each cell type.
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cell type replaceable?
vessel No
empty Yes
viable No
hypoxic No
necrotic No

Table 129: Replaceable predicate of each cell type.

cell type reproductive?
vessel No
empty Yes
viable Yes
hypoxic Yes
necrotic No

Table 130: Reproductive predicate of each cell type.

cell type triggers actions
viable ρ1 < 0.07 jump to hypoxic
hypoxic ρ1 < 0.05 jump to necrotic
hypoxic ρ1 > 0.07 jump to viable

Table 131: Conditional triggers and actions for those cell types so configured.

a.13.1.2 Initial conditions

The simulation opens with the initial concentration of O2 specified in Table 123. This

diffuses with a rate specified in Table 122. We initialize the 3D lattice with empty cells;

we place one viable cell in the center, and two vessels, one mid-way along the diagonal

from the center to the SW corner of the plane z = 20, the other mid-way along the
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diagonal from the center to the NE corner of the plane z = 20. Vessels consume no

particles and release O2 at the rate specified in Table 127.
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a.13.2 Results

a.13.2.1 Spatial cell population evolution

Figure 75: Time evolution of cell populations on the plane z = 20. Left-to-right, top-to-bottom:
150 generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49,
53, 57, 61, 65, 69, 74, 78, 83, 87, 92, 96, 101, 105, 110, 114, 119, 123, 128, 132, 137, 141,
146, 150). Key: vessel (white), empty, viable, hypoxic, necrotic.
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Figure 76: Time evolution of local fitness for viable cells. Left-to-right, top-to-bottom: 150 gen-
erations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57,
61, 65, 69, 74, 78, 83, 87, 92, 96, 101, 105, 110, 114, 119, 123, 128, 132, 137, 141, 146,
150).
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Figure 77: Time evolution of local fitness for hypoxic cells. Left-to-right, top-to-bottom: 150
generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53,
57, 61, 65, 69, 74, 78, 83, 87, 92, 96, 101, 105, 110, 114, 119, 123, 128, 132, 137, 141,
146, 150).
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Figure 78: Time evolution of local fitness for necrotic cells. Left-to-right, top-to-bottom: 150
generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53,
57, 61, 65, 69, 74, 78, 83, 87, 92, 96, 101, 105, 110, 114, 119, 123, 128, 132, 137, 141,
146, 150).
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a.13.2.2 Temporal cell population evolution

Figure 79: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, viable, hypoxic, necrotic.

a.13.3 Discussion

We observe the following sequence of events in Figure 75, Figure 76, Figure 77, and

Figure 78. Viable cells proliferate radially outward from the center. Once most of the
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volume is covered with viable cells, then hypoxic cells appear in the center. Hypoxic

cells grow radially outward at a similar rate to the viable cells just beyond them.

They approach vessels (surrounded by viable cells) up to some radial distance away

from each vessel, the zone into which O2 diffuses with a sufficient concentration to

maintain viable cells. Once about half of the volume is covered with hypoxic cells, then

necrotic cells appear in the center. Necrotic cells grow radially outward at a similar rate

to the hypoxic and viable cells just beyond them. They approach vessels (surrounded

by concentrically situated viable and hypoxic cells) up to some radial distance away

from each vessel, the zone into which O2 diffuses with a sufficient concentration to

maintain viable and hypoxic cells. We eventually observe islands of concentrically situ-

ated viable and hypoxic cells, surrounded by a sea of necrotic cells, similar to what we

see in the anti-pimonidazole stain images. This arrangement is stable for awhile, be-

fore the remaining viable cells become hypoxic cells. These hypoxic cell islands persist

indefinitely. We observe the succession of viable → hypoxic → necrotic cell populations

in Figure 79. The initial decay of viable and hypoxic cell populations is due to their pro-

liferating outside of the spatial dimensions of the simulation while simultaneously

being replaced by the succeeding population. Since necrotic cells cannot be replaced,

their population size monotonically increases. By generation 115, necrotic cells have

taken over the volume, except for the islands of hypoxic cells.
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a.14 stable local hypoxia with many vessels (3d)

a.14.1 Setup

In this simulation, we have viable, hypoxic, and necrotic tumor cells that correspond to

those we see in the anti-pimonidazole stain images. The viable and hypoxic cells con-

sume O2 at a certain rate, and release no particles. The conditional logic implements

a simple state machine in the following way. Wherever O2 falls below a threshold,

viable cells become (“jump” to) hypoxic cells—identical in every way except as fol-

lows. Wherever O2 rises above that threshold, hypoxic cells become viable again; and

wherever O2 falls below an even lower threshold, hypoxic cells become necrotic cells.

Once a cell becomes necrotic it has entered an absorbing state and its behavior is com-

pletely inert: it has no consumption or release profile, and it is neither replaceable nor

reproductive. The specific quantities mentioned here are given in the tables below.

a.14.1.1 Configuration parameters

O2

0.12

Table 132: Diffusion rate of each particle type.

O2

0.1

Table 133: Initial concentration of each particle type.
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cell type O2

vessel 0
empty 0
viable 0
hypoxic 0
necrotic 0

Table 134: Basal lower-bound concentration of each particle type by cell type.

cell type O2

vessel ∞
empty ∞
viable ∞
hypoxic ∞
necrotic ∞

Table 135: Basal upper-bound concentration of each particle type by cell type.

cell type O2

vessel 0
empty 0
viable 0.01
hypoxic 0.01
necrotic 0

Table 136: Consumption rate of each particle type by cell type.
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cell type O2

vessel 0.2
empty 0
viable 0
hypoxic 0
necrotic 0

Table 137: Release rate for of particle type by cell type.

cell type O2

vessel 0
empty 0
viable 1
hypoxic 1
necrotic 0

Table 138: Impact factor of each particle type upon each cell type.

cell type replaceable?
vessel No
empty Yes
viable No
hypoxic No
necrotic No

Table 139: Replaceable predicate of each cell type.
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cell type reproductive?
vessel No
empty Yes
viable Yes
hypoxic Yes
necrotic No

Table 140: Reproductive predicate of each cell type.

cell type triggers actions
viable ρ1 < 0.07 jump to hypoxic
hypoxic ρ1 < 0.05 jump to necrotic
hypoxic ρ1 > 0.07 jump to viable

Table 141: Conditional triggers and actions for those cell types so configured.

a.14.1.2 Initial conditions

The simulation opens with the initial concentration of O2 specified in Table 133. This

diffuses with a rate specified in Table 132. We initialize the 3D lattice with empty

cells; we place one viable cell in the center, and 100 vessels randomly about. Vessels

consume no particles and release O2 at the rate specified in Table 137.
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a.14.2 Results

a.14.2.1 Spatial cell population evolution

Figure 80: Time evolution of cell populations on the plane z = 20. Left-to-right, top-to-bottom:
150 generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49,
53, 57, 61, 65, 69, 74, 78, 83, 87, 92, 96, 101, 105, 110, 114, 119, 123, 128, 132, 137, 141,
146, 150). Key: vessel (white), empty, viable, hypoxic, necrotic.
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Figure 81: Time evolution of local fitness for viable cells. Left-to-right, top-to-bottom: 150 gen-
erations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57,
61, 65, 69, 74, 78, 83, 87, 92, 96, 101, 105, 110, 114, 119, 123, 128, 132, 137, 141, 146,
150).
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Figure 82: Time evolution of local fitness for hypoxic cells. Left-to-right, top-to-bottom: 150
generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53,
57, 61, 65, 69, 74, 78, 83, 87, 92, 96, 101, 105, 110, 114, 119, 123, 128, 132, 137, 141,
146, 150).
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Figure 83: Time evolution of local fitness for necrotic cells. Left-to-right, top-to-bottom: 150
generations shown in 36 frames (t = 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53,
57, 61, 65, 69, 74, 78, 83, 87, 92, 96, 101, 105, 110, 114, 119, 123, 128, 132, 137, 141,
146, 150).
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a.14.2.2 Temporal cell population evolution

Figure 84: Time evolution of: populations by cell type (top), local fitness by cell type (middle),
and neighborhood fitness by cell type (bottom). In the latter two, mean curves are
plotted and gray regions above and below show the respective standard deviations.
Key: empty, viable, hypoxic, necrotic.

a.14.3 Discussion

We observe the following sequence of events in Figure 80, Figure 81, Figure 82, and

Figure 83. Viable cells proliferate radially outward from the center. Once most of the
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volume is covered with viable cells, then hypoxic cells appear in the center. Hypoxic

cells grow radially outward at a similar rate to the viable cells just beyond them.

They approach vessels (surrounded by viable cells) up to some radial distance away

from each vessel, the zone into which O2 diffuses with a sufficient concentration to

maintain viable cells. Once about half of the volume is covered with hypoxic cells, then

necrotic cells appear in the center. Necrotic cells grow radially outward at a similar rate

to the hypoxic and viable cells just beyond them. They approach vessels (surrounded

by concentrically situated viable and hypoxic cells) up to some radial distance away

from each vessel, the zone into which O2 diffuses with a sufficient concentration to

maintain viable and hypoxic cells. We eventually observe islands of concentrically situ-

ated viable and hypoxic cells, surrounded by a sea of necrotic cells, similar to what we

see in the anti-pimonidazole stain images. This arrangement is stable for awhile, be-

fore the remaining viable cells become hypoxic cells. These hypoxic cell islands persist

indefinitely. We observe the succession of viable → hypoxic → necrotic cell populations

in Figure 84. The initial decay of viable and hypoxic cell populations is due to their pro-

liferating outside of the spatial dimensions of the simulation while simultaneously

being replaced by the succeeding population. Since necrotic cells cannot be replaced,

their population size monotonically increases. By generation 125, necrotic cells have

taken over the volume, except for the islands of hypoxic cells.
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Below is the Matlab code for the simulator, configured for stable local hypoxia with

many vessels (3D).

1 function [] = simulator()

%% declare parameters and data structures

% global parameters

6 s_dim = 40; % symmetric dimension (used for convenience, when

x, y, z dims are identical)

x_dim = s_dim; % x dimension

y_dim = s_dim; % y dimension

z_dim = s_dim; % z dimension

num_cell_types = 5; % number of cell types

11 num_particle_types = 1; % number of particle types

num_iters = 1000; % number of simulation clock ticks

d_tau = 1; % time scale separation parameter

plot_every = 1; % number of clock ticks between plottings

reproduce_every = 1; % number of clock ticks between probabilistic

reproductions

16 delay_occupation_by = 0; % number of clock ticks before initializing cell

type occupations (used to establish gradients prior to exposing cells)

plot_3d = 1; % predicate for plotting 3D occupation per cell

type
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% output predicates

output_results = 1; % predicate for outputting plots (

global switch for those below)

21 output_cell_types = 1; % predicate for outputting cell types

output_time_series = 1; % predicate for outputting time series

output_local_fitness_3d = 1; % predicate for outputting local

fitness in 3D

output_local_fitness = 1; % predicate for outputting local

fitness

output_neighborhood_fitness = 0; % predicate for outputting

neighborhood fitness

26 output_particle_concentration = 0; % predicate for outputting particle

concentration

output_only_cell_types = [3 4 5]; % subset of cell types to output

output_only_particle_types = [1]; % subset of particle types to output

% diffusion rate of each particle type

31 diffusion_rate = [0.1];

% initial concentration of each particle type

init_concentration = [0.1];

36 % basal lower bound of each particle type for each cell type

basal_lower = [0; % vessel

0; % empty

0; % alpha

0; % beta

41 0]; % gamma
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% basal upper bound of each particle type for each cell type

basal_upper = [Inf; % vessel

Inf; % empty

46 Inf; % alpha

Inf; % beta

Inf]; % gamma

% consume rate of each particle type for each cell type

51 consume_rate = [0; % vessel

0; % empty

0.01; % alpha

0.01; % beta

0]; % gamma

56

% release rate of each particle type for each cell type

release_rate = [0.2; % vessel

0; % empty

0; % alpha

61 0; % beta

0]; % gamma

% impact factor of each particle type for each cell type

impact_factor = [0; % vessel

66 0; % empty

1; % alpha

1; % beta

0]; % gamma
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71 % replacement status of each cell type

replaceable = [0; % vessel

1; % empty

0; % alpha

0; % beta

76 0]; % gamma

% reproductive status of each cell type

reproductive = [0; % vessel

1; % empty

81 1; % alpha

1; % beta

0]; % gamma

% color of each cell type

86 cell_type_color_map = [1 1 1; % vessel (white)

0 0 1; % empty (blue)

1 0 0; % alpha (red)

0 1 0; % beta (green)

1 0.5 0]; % gamma (orange)

91

% declare conditional triggers and actions:

% trigger = { <particle type> <comparative operator = {<,=,>}> <value> }

% action = { <operator = {a,j,-,+,c,r,i}> <operand 1 = {jump cell type,

boolean target value, particle type}> <operand 2 = {particle concentration,

impact factor}> }

% note:

96 % operator: number of operands:

% {a} 0
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% {j,-,+} 1

% {c,r,i} 2

% example conditional triggers and actions:

101 % conditionals(n) = { { { {t1} {t2} {t3} } { {a1} {a2} } }

% { { {t1} {t2} } { {a1} {a2} {a3} } }

% };

conditionals = containers.Map(’KeyType’, ’int32’, ’ValueType’, ’any’);

conditionals(3) = {

106 { { {1 ’<’ 0.07} } { {’j’ 4} } }

}; % alpha

conditionals(4) = {

{ { {1 ’<’ 0.05} } { {’j’ 5} } }

{ { {1 ’>’ 0.07} } { {’j’ 3} } }

111 }; % beta

% define essential simulation arrays

occupation = zeros(x_dim, y_dim, z_dim); % cell

types

concentration = zeros(x_dim, y_dim, z_dim, num_particle_types); %

particle concentrations

116 impact_factor_cond = zeros(x_dim, y_dim, z_dim, num_particle_types); % impact

factor of each particle type for each cell

replaceable_cond = zeros(x_dim, y_dim, z_dim); %

replacement status of each cell

reproductive_cond = zeros(x_dim, y_dim, z_dim); %

reproductive status of each cell

fitness_1 = zeros(x_dim, y_dim, z_dim); % local

fitness (used in conjunction with occupation; each coordinate has one local

fitness value)
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fitness_n = zeros(x_dim, y_dim, z_dim, num_cell_types); %

neighborhood fitness (each coordinate has a neighborhood fitness value for

each cell type)

121

% define statistics arrays

population = zeros(num_cell_types, num_iters); % population of each

cell type

fitness_1_avg = zeros(num_cell_types, num_iters); % mean local fitness

for each cell type

fitness_1_std = zeros(num_cell_types, num_iters); % standard deviation

local fitness for each cell type

126 fitness_n_avg = zeros(num_cell_types, num_iters); % mean neighborhood

fitness for each cell type

fitness_n_std = zeros(num_cell_types, num_iters); % standard deviation

neighborhood fitness for each cell type

diameter_x = zeros(num_cell_types, num_iters); % global x-extent for

each cell type

diameter_y = zeros(num_cell_types, num_iters); % global y-extent for

each cell type

diameter_z = zeros(num_cell_types, num_iters); % global z-extent for

each cell type

131 epc = zeros(num_cell_types, num_iters); % global Euler-Poincare

characteristic for each cell type

wallclock = zeros(num_iters); % wallclock time for

each tick’s processing

%% set initial conditions

136 % define some useful landmarks
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mid_x = floor(x_dim / 2);

mid_y = floor(y_dim / 2);

mid_z = floor(z_dim / 2) + 1;

mid_mid_x = floor(x_dim / 4);

141 mid_mid_y = floor(y_dim / 4);

mid_mid_z = floor(z_dim / 4) + 1;

% initialize particle concentrations by particle type

for pt = 1 : num_particle_types

146 concentration(:,:,:,pt) = init_concentration(pt);

end

% initialize the cell type occupations

occupation_delay_elapsed = false;

151 if ~delay_occupation_by

initialize_occupation;

occupation_delay_elapsed = true;

end

156 %% setup for outputting results

if output_results

% create timestamp

161 [year, month, day, hour, minute, second] = datevec(now);

years = num2str(year);

months = num2str(month);

days = num2str(day);

hours = num2str(hour);
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166 minutes = num2str(minute);

seconds = num2str(floor(second));

if length(months) == 1

months = strcat(’0’, months);

end

171 if length(days) == 1

days = strcat(’0’, days);

end

if length(hours) == 1

hours = strcat(’0’, hours);

176 end

if length(minutes) == 1

minutes = strcat(’0’, minutes);

end

if length(seconds) == 1

181 seconds = strcat(’0’, seconds);

end

ts = sprintf(’%s_%s_%s__%s_%s_%s’, years, months, days, hours, minutes,

seconds);

% create new results directory and copy this code into it

186 path = strcat(’/tmp/simulations/’, ts);

mkdir(path);

copyfile(’gd.m’, path);

end

191

%% simulation loop
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for tick = 1 : num_iters

196 %% prologue

% set the timer for this tick

tic;

201 % set the time scale separation parameter

tau = tick * d_tau;

% initialize once the cell type occupations after the delay

if tick > delay_occupation_by && ~occupation_delay_elapsed

206 initialize_occupation;

occupation_delay_elapsed = true;

end

% initialize the conditional matrices after the delay

211 if tick > delay_occupation_by

impact_factor_cond = reshape(impact_factor(occupation,:), x_dim, y_dim,

z_dim, num_particle_types);

replaceable_cond = replaceable(occupation);

reproductive_cond = reproductive(occupation);

end

216

%% phase I: consume and release particles

% if past the occupation delay

if tick > delay_occupation_by

221
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% DEFAULT: consume and release particles according to the cells’

respective consumption and release rates

for pt = 1 : num_particle_types

concentration_pt = concentration(:,:,:,pt);

for ct = 1 : num_cell_types

226 concentration_pt(occupation == ct) = concentration_pt(occupation

== ct) * (1 - consume_rate(ct,pt) + release_rate(ct,pt));

end

concentration(:,:,:,pt) = concentration_pt;

end

231 % CONDITIONAL: for each cell type defined in the conditionals

for cond_key = conditionals.keys

% define the cell type from the conditional key

ct = cond_key{1};

236

% fetch the conditional block

cond = conditionals(ct);

% for each trigger-action defined for this cell type

241 for ta = 1 : numel(cond)

% parse out the trigger set and the action set

triggers = cond{ta}{1}; % trigger set

actions = cond{ta}{2}; % action set

246

% declare a result matrix for this trigger set

ts_result = ones(x_dim, y_dim, z_dim);
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% for each trigger in the trigger set

251 for t = 1 : numel(triggers)

% fetch the trigger out of the trigger set

trigger = triggers{t};

256 % parse out the trigger elements

trigger_pt = trigger{1}; % this trigger’s particle type

trigger_op = trigger{2}; % this trigger’s operator

trigger_pc = trigger{3}; % this trigger’s particle

concentration

261 % obtain the appropriate concentrations for this trigger’s

particle type

concentration_trigger_pt = concentration(:,:,:,trigger_pt);

% determine the results of this trigger based on this

trigger’s operator

switch trigger_op

266 case ’<’

ts_result = ts_result & (occupation == ct) & (

concentration_trigger_pt < trigger_pc);

case ’>’

ts_result = ts_result & (occupation == ct) & (

concentration_trigger_pt > trigger_pc);

case ’=’

271 ts_result = ts_result & (occupation == ct) & (

concentration_trigger_pt == trigger_pc);
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end

end % for each trigger in the trigger set

276 % for each action defined for this trigger set

for a = 1 : numel(actions)

% fetch the action out of the action set

action = actions{a};

281

% parse out the action elements

action_op = action{1}; % this action’s operator

if ~isequal(action_op, ’a’)

action_o1 = action{2}; % this action’s operand 1 (e.g.,

boolean target value, particle type, jump cell type

)

286 end

if ~isequal(action_op, ’a’) && ~isequal(action_op, ’j’) && ~

isequal(action_op, ’-’) && ~isequal(action_op, ’+’)

action_o2 = action{3}; % this action’s operand 2 (e.g.,

particle concentration)

end

291 % for the trigger set result cells, perform the action

switch action_op

case ’a’

occupation(ts_result) = 2;

for pt = 1 : num_particle_types
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296 impact_factor_cond_pt = impact_factor_cond

(:,:,:,pt);

impact_factor_cond_pt(ts_result) = impact_factor

(2,pt);

impact_factor_cond(:,:,:,pt) = impact_factor_

cond_pt;

end

replaceable_cond(ts_result) = replaceable(2);

301 reproductive_cond(ts_result) = reproductive(2);

case ’j’

occupation(ts_result) = action_o1;

for pt = 1 : num_particle_types

impact_factor_cond_pt = impact_factor_cond

(:,:,:,pt);

306 impact_factor_cond_pt(ts_result) = impact_factor

(action_o1,pt);

impact_factor_cond(:,:,:,pt) = impact_factor_

cond_pt;

end

replaceable_cond(ts_result) = replaceable(action_o1)

;

reproductive_cond(ts_result) = reproductive(action_o

1);

311 case ’-’

replaceable_cond(ts_result) = action_o1;

case ’+’

reproductive_cond(ts_result) = action_o1;

case ’c’

316 concentration_o1 = concentration(:,:,:,action_o1);
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concentration_o1(ts_result) = concentration_o1(ts_

result) * (1 - action_o2);

concentration(:,:,:,action_o1) = concentration_o1;

case ’r’

concentration_o1 = concentration(:,:,:,action_o1);

321 concentration_o1(ts_result) = concentration_o1(ts_

result) * (1 + action_o2);

concentration(:,:,:,action_o1) = concentration_o1;

case ’i’

impact_factor_cond_o1 = impact_factor_cond(:,:,:,

action_o1);

impact_factor_cond_o1(ts_result) = action_o2;

326 impact_factor_cond(:,:,:,action_o1) = impact_factor_

cond_o1;

end

end % for each action defined for this trigger set

331 end % for each trigger-action defined for this cell type

end % for each cell type defined in the conditionals

end % if tick > delay_occupation

336

%% phase II: diffuse particles

% diffuse particles according to the particles’ respective diffusion rates

for pt = 1 : num_particle_types

341 sigma = sqrt(2 * diffusion_rate(pt));
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if z_dim > 1

G = gauss3([5 5 5], [sigma sigma sigma]);

else

G = fspecial(’gaussian’, [5 5], sigma);

346 end

concentration(:,:,:,pt) = imfilter(concentration(:,:,:,pt), G, ’

replicate’, ’same’, ’conv’);

end

% restore concentrations to within their basal bounds

351 for pt = 1 : num_particle_types

concentration_pt = concentration(:,:,:,pt);

for ct = 1 : num_cell_types

bl = basal_lower(ct, pt);

bu = basal_upper(ct, pt);

356 concentration_pt((occupation == ct) & (concentration_pt < bl)) = bl;

concentration_pt((occupation == ct) & (concentration_pt > bu)) = bu;

end

concentration(:,:,:,pt) = concentration_pt;

end

361

%% phase III: compute cell fitness

% if past the occupation delay

if tick > delay_occupation_by

366

% compute local fitness of each voxel

fitness_1 = zeros(x_dim, y_dim, z_dim);

for i = 1 : x_dim

280



appendices

for j = 1 : y_dim

371 for k = 1 : z_dim

% get the cell type at this voxel

cell_type = occupation(i,j,k);

376 % skip vessel and empty cell types, since these cannot

obtain a local fitness

if cell_type == 1 || cell_type == 2

continue;

end

381 % comute local fitness based on particle type concentrations

and their respective impact factors

impact_factors = reshape(impact_factor_cond(i,j,k,:), 1, num

_particle_types);

concentrations = reshape(concentration(i,j,k,:), num_

particle_types, 1);

fitness_1(i,j,k) = impact_factors * concentrations;

386 end

end

end

% compute neighborhood fitness of each voxel

391 fitness_n = zeros(x_dim, y_dim, z_dim, num_cell_types);

for i = 1 : x_dim

for j = 1 : y_dim

for k = 1 : z_dim
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396 % get the cell type at this voxel

cell_type = occupation(i,j,k);

% skip vessel cell type, since they cannot be targeted for a

new cell type (but empty cells still can)

if cell_type == 1

401 continue;

end

% compute neighborhood fitness; loop from cell type 3 (post-

vessel, post-empty) to the last type

for ct = 3 : num_cell_types

406 num_neighbors = 0;

sum_neighbors = 0;

for ii = i-1 : i+1

if ii < 1 || ii > x_dim

continue;

411 end

for jj = j-1 : j+1

if jj < 1 || jj > y_dim

continue;

end

416 for kk = k-1 : k+1

if kk < 1 || kk > z_dim

continue;

end

if occupation(ii,jj,kk) ~= ct

421 continue;
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end

num_neighbors = num_neighbors + 1;

sum_neighbors = sum_neighbors + fitness_1(ii

,jj,kk);

end % for kk

426 end % for jj

end % for ii

if num_neighbors == 0

fitness_n(i,j,k,ct) = 0;

else

431 fitness_n(i,j,k,ct) = sum_neighbors / num_neighbors;

end

end % for ct

end % for k

436 end % for j

end % for i

end % if tick > delay_occupation

441 %% interlude: compute and plot statistics

% compute statistics

for ct = 1 : num_cell_types

446 % occupations for this cell type

occupation_ct = occupation == ct;

% population of this cell type
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population(ct, tick) = sum(sum(sum(occupation_ct)));

451

% local fitness of this cell type

fitness_1_avg(ct, tick) = mean(fitness_1(occupation_ct));

fitness_1_std(ct, tick) = std(fitness_1(occupation_ct));

456 % neighborhood fitness of this cell type

fitness_n_ct = fitness_n(:,:,:,ct);

fitness_n_avg(ct, tick) = mean(fitness_n_ct(occupation > 1));

fitness_n_std(ct, tick) = std(fitness_n_ct(occupation > 1));

461 % x,y,z-extent for this cell type

[cti, ctj, ctk] = ind2sub(size(occupation_ct), find(occupation_ct));

if numel(cti) == 0

diameter_x(ct, tick) = 0;

else

466 diameter_x(ct, tick) = max(cti) - min(cti) + 1;

end

if numel(ctj) == 0

diameter_y(ct, tick) = 0;

else

471 diameter_y(ct, tick) = max(ctj) - min(ctj) + 1;

end

if numel(ctk) == 0

diameter_z(ct, tick) = 0;

else

476 diameter_z(ct, tick) = max(ctk) - min(ctk) + 1;

end
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% Euler-Poincare characteristic for this cell type

if z_dim > 1

481 epc(ct, tick) = imEuler3d(occupation_ct);

else

epc(ct, tick) = imEuler2d(occupation_ct);

end

486 end

% plot statistics

if ~mod(tick, plot_every)

plot_statistics();

491 end

%% phase IV: reproduce cells probabilistically

% if past the occupation delay

496 if tick > delay_occupation_by

% if it’s time to reproduce

if ~mod(tick, reproduce_every)

501 % probabilistically determine the fate of each voxel

for i = 1 : x_dim

for j = 1 : y_dim

for k = 1 : z_dim

506 % if this cell type is not replaceable, then skip it

if ~replaceable_cond(i,j,k)
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continue;

end

511 % declare a probability vector; the first two elements (

representing vessel and empty cell types) won’t be

used

probabilities = zeros(1, num_cell_types);

% obtain the probabilities from the neighborhood fitness

values; loop from cell type 3 (post-vessel, post-

empty) to the last type

for ct = 3 : num_cell_types

516 probabilities(ct) = fitness_n(i,j,k,ct);

end

% sum the probabilities

sum_probabilities = sum(probabilities);

521

% if the sum of probabilities is greater than one, then

normalize the probabilities to one

shrinkage_factor = 1;

if sum_probabilities > 1

shrinkage_factor = 1 / sum_probabilities;

526 end

probabilities = shrinkage_factor * probabilities;

% partition the [0,1] interval by the set of

probabilities, contiguously placed along the

interval, and randomly point into the interval to
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select the target cell type for this cell; loop from

cell type 3 (post-vessel, post-empty) to the last

type

essay = rand;

531 beg_num = 0;

end_num = 0;

target_cell_type = 0;

for ct = 3 : num_cell_types

beg_num = end_num;

536 end_num = end_num + probabilities(ct);

if essay >= beg_num && essay < end_num

target_cell_type = ct;

break;

end

541 end

% if the random point lies beyond the last cell type’s

probability range, then it must become an empty cell

if target_cell_type == 0

target_cell_type = 2;

546 end

% if any of the neighboring cells are of the target type

and are reproductive, then mutate the current cell

type to the target cell type

neighbor_is_of_target_cell_type_and_reproductive = false

;

for ii = i-1 : i+1

551 if ii < 1 || ii > x_dim
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continue;

end

for jj = j-1 : j+1

if jj < 1 || jj > y_dim

556 continue;

end

for kk = k-1 : k+1

if kk < 1 || kk > z_dim

continue;

561 end

if (occupation(ii,jj,kk) == target_cell_type

) && reproductive_cond(ii,jj,kk)

neighbor_is_of_target_cell_type_and_

reproductive = true;

end

end % for kk

566 end % for jj

end % for ii

if neighbor_is_of_target_cell_type_and_reproductive

occupation(i,j,k) = target_cell_type;

end

571

end % for k

end % for j

end % for i

576 end % reproduce every

end % if tick > delay_occupation
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%% epilogue

581

% record the timer for this tick

wallclock(tick) = toc;

end % for tick

586

%% plot the statistics of interest

function [] = plot_statistics()

% define some useful constants

591 gray_256 = grade([1 1 1], 256);

num_rows = 6;

num_ct_cols = (num_cell_types - 2) + 1; % no columns for vessel and

empty cell types + 1 column for corresponding time series

num_cols = max(num_ct_cols, num_particle_types);

del_cols = num_cols - num_ct_cols;

596 ct_range = 3 : num_cell_types;

pt_range = 1 : num_particle_types;

cursor = 1;

% set up the figure

601 figure(1);

clf;

% cell types (2-D slice)

subplot(num_rows, num_cols, cursor);

606 imagesc(occupation(:,:,mid_z), [1 size(cell_type_color_map,1)]);
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colormap(cell_type_color_map);

freezeColors;

set(gca, ’YDir’, ’normal’);

axis square;

611 cursor = cursor + 1;

% performance (time series)

subplot(num_rows, num_cols, cursor);

domain = 1:tick-1;

616 wc = wallclock(domain);

wc_avg = mean(wc);

wc_std = std(wc);

plot(domain, wc);

freezeColors;

621 title([’avg=’ sprintf(’%3.3f’, wc_avg) ’, std=’ sprintf(’%3.3f’, wc_std)

]);

axis square;

cursor = cursor + 1;

% pad, if necessary

626 pad_cursor();

% cell type 3D plot

for ct = ct_range

if plot_3d

631 subplot(num_rows, num_cols, cursor);

occ_ct = occupation == ct;

fit_ct = fitness_1(occ_ct);

min_fit_ct = min(fit_ct);
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max_fit_ct = max(fit_ct);

636 if min_fit_ct < max_fit_ct

norm_fit_ct = (fit_ct - min_fit_ct) ./ (max_fit_ct - min_fit

_ct);

else

norm_fit_ct = 0;

end

641 color_density = 256;

color_grade = grade(cell_type_color_map(ct,:), color_density);

color_idx = floor((color_density - 1) * norm_fit_ct) + 1;

scatter_colors = color_grade(color_idx,:);

[x,y,z] = ind2sub(size(occ_ct), find(occ_ct));

646 % note the axis order for plotting: <y,x,z>

scatter3(y, x, z, 20, scatter_colors, ’filled’, ’s’);

colormap(grade(cell_type_color_map(ct,:), color_density));

ch = colorbar;

if min_fit_ct < max_fit_ct

651 caxis([min_fit_ct max_fit_ct]);

end

cbfreeze(ch);

xlabel(’x’);

ylabel(’y’);

656 zlabel(’z’);

if z_dim > 1

axis([1 x_dim 1 y_dim 1 z_dim]);

else

axis([1 x_dim 1 y_dim]);

661 end

axis square;
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end

cursor = cursor + 1;

end

666

% population by cell type (time series)

subplot(num_rows, num_cols, cursor);

hold on;

for ct = 1 : num_cell_types

671 plot(1:tick, population(ct, 1:tick), ’color’, cell_type_color_map(ct

,:));

end

hold off;

freezeColors;

if tick > 1

676 xlim([1 tick]);

end

axis square;

cursor = cursor + 1;

681 % pad, if necessary

pad_cursor();

% cell type local fitness (2-D slice)

for ct = ct_range

686 subplot(num_rows, num_cols, cursor);

imagesc((occupation(:,:,mid_z) == ct) .* fitness_1(:,:,mid_z));

colormap(grade(cell_type_color_map(ct,:), 256));

cbfreeze(colorbar);

freezeColors;
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691 set(gca, ’YDir’, ’normal’);

axis square;

cursor = cursor + 1;

end

696 % local fitness by cell type (time series)

subplot(num_rows, num_cols, cursor);

plot_time_series(fitness_1_avg(ct_range,:), fitness_1_std(ct_range,:),

cell_type_color_map(ct_range,:), 1, tick);

axis square;

cursor = cursor + 1;

701

% pad, if necessary

pad_cursor();

% cell type neighborhood fitness (2-D slice)

706 for ct = ct_range

subplot(num_rows, num_cols, cursor);

imagesc((occupation(:,:,mid_z) > 1) .* fitness_n(:,:,mid_z,ct));

colormap(grade(cell_type_color_map(ct,:), 256));

cbfreeze(colorbar);

711 freezeColors;

set(gca, ’YDir’, ’normal’);

axis square;

cursor = cursor + 1;

end

716

% neighborhood fitness by cell type (time series)

subplot(num_rows, num_cols, cursor);
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plot_time_series(fitness_n_avg(ct_range,:), fitness_n_std(ct_range,:),

cell_type_color_map(ct_range,:), 1, tick);

axis square;

721 cursor = cursor + 1;

% pad, if necessary

pad_cursor();

726 % cell type x,y,z-extent

for ct = ct_range

subplot(num_rows, num_cols, cursor);

hold on;

% note the axis order for plotting: <y,x,z>

731 plot(1:tick, diameter_y(ct, 1:tick), ’r’);

plot(1:tick, diameter_x(ct, 1:tick), ’g’);

plot(1:tick, diameter_z(ct, 1:tick), ’b’);

hold off;

if tick > 1

736 xlim([1 tick]);

end

axis square;

cursor = cursor + 1;

end

741

% Euler-Poincare characteristic by cell type (time series)

subplot(num_rows, num_cols, cursor);

hold on;

for ct = 1 : num_cell_types

746 plot(1:tick, epc(ct, 1:tick), ’color’, cell_type_color_map(ct,:));
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end

hold off;

freezeColors;

axis square;

751 cursor = cursor + 1;

% pad, if necessary

pad_cursor();

756 % particle type concentrations (2-D slice)

for pt = pt_range

subplot(num_rows, num_cols, cursor);

con_pt = concentration(:,:,mid_z,pt);

min_con_pt = min(min(con_pt));

761 max_con_pt = max(max(con_pt));

mesh(con_pt);

colormap(gray_256);

min_rel = ’=’;

if min_con_pt > 1000

766 min_rel = ’>’;

min_con_pt = 1000;

end

max_rel = ’=’;

if max_con_pt > 1000

771 max_rel = ’>’;

max_con_pt = 1000;

end

title([’min’ min_rel sprintf(’%3.3f’, min_con_pt) ’, max’ max_rel

sprintf(’%3.3f’, max_con_pt)]);
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axis square;

776 xlim([1 x_dim]);

ylim([1 y_dim]);

cursor = cursor + 1;

end

781 % if outputting results, then create and save a stand-alone figure

if output_results

if output_cell_types

save_cell_types();

end

786 if output_time_series

save_time_series(ct_range);

end

if output_local_fitness_3d

save_local_fitness_3d(ct_range);

791 end

if output_local_fitness

save_local_fitness(ct_range);

end

if output_neighborhood_fitness

796 save_neighborhood_fitness(ct_range);

end

if output_particle_concentration

save_particle_concentration(gray_256, pt_range)

end

801 end

function [rc] = row_cursor(cursor, num_cols)
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rc = mod(cursor, num_cols);

if rc == 0

806 rc = num_cols;

end

end % function row_cursor

function [] = pad_cursor()

811 for p = 1 : (num_cols - row_cursor(cursor - 1, num_cols))

cursor = cursor + 1;

end

end % function pad_cursor

816 end % function plot_statistics

%% plot cell types and save them to disk

function [] = save_cell_types()

821 % set up an invisible figure

h = figure(’Visible’, ’off’);

% cell types (2-D slice)

imagesc(occupation(:,:,mid_z), [1 size(cell_type_color_map,1)]);

826 colormap(cell_type_color_map);

freezeColors;

set(gca, ’YDir’, ’normal’);

axis square;

title({’Cell Population’ [’t=’ num2str(tick)]});

831

% create figure file name and save figure
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len_num_iters = length(num2str(num_iters));

len_tick = length(num2str(tick));

len_pad = len_num_iters - len_tick;

836 pad = ’’;

for pi = 1 : len_pad

pad = strcat(’0’, pad);

end

fig_file = strcat(path, ’/’, ’cells_’, pad, num2str(tick));

841 saveas(gcf, fig_file, ’pdf’);

% delete figure

close(h);

846 end % function save_cell_types

%% plot certain time series and save them to disk

function [] = save_time_series(ct_range)

851 % set up an invisible figure

h = figure(’Visible’, ’off’);

% population by cell type (time series)

subplot(3,1,1);

856 hold on;

for ct = 1 : num_cell_types

plot(1:tick, population(ct, 1:tick), ’color’, cell_type_color_map(ct

,:));

end

hold off;
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861 if tick > 1

xlim([1 tick]);

end

title(’Time Evolution of Populations by Cell Type’);

866 % local fitness by cell type (time series)

subplot(3,1,2);

plot_time_series(fitness_1_avg(ct_range,:), fitness_1_std(ct_range,:),

cell_type_color_map(ct_range,:), 1, tick);

title(’Time Evolution of Local Fitness by Cell Type’);

871 % neighborhood fitness by cell type (time series)

subplot(3,1,3);

plot_time_series(fitness_n_avg(ct_range,:), fitness_n_std(ct_range,:),

cell_type_color_map(ct_range,:), 1, tick);

title(’Time Evolution of Neighborhood Fitness by Cell Type’);

876 % create figure file name and save figure

fig_file = strcat(path, ’/’, ’time_series’);

saveas(h, fig_file, ’fig’);

saveas(h, fig_file, ’pdf’);

881 % delete figure

close(h);

end % function save_time_series

886 %% plot local fitness 3D and save them to disk

function [] = save_local_fitness_3d(ct_range)
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% cell type 3D plot

for ct = ct_range

891

% process only designated cell types

if ~numel(find(output_only_cell_types == ct))

continue;

end

896

% set up an invisible figure

h = figure(’Visible’, ’off’);

% plot the image

901 occ_ct = occupation == ct;

fit_ct = fitness_1(occ_ct);

min_fit_ct = min(fit_ct);

max_fit_ct = max(fit_ct);

norm_fit_ct = fit_ct;

906 if min_fit_ct < max_fit_ct

norm_fit_ct = (fit_ct - min_fit_ct) ./ (max_fit_ct - min_fit_ct)

;

end

color_density = 256;

color_grade = grade(cell_type_color_map(ct,:), color_density);

911 color_idx = floor((color_density - 1) * norm_fit_ct) + 1;

scatter_colors = color_grade(color_idx,:);

[x,y,z] = ind2sub(size(occ_ct), find(occ_ct));

% note the axis order for plotting: <y,x,z>

scatter3(y, x, z, 20, scatter_colors, ’filled’, ’s’);
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916 colormap(grade(cell_type_color_map(ct,:), color_density));

drawnow;

ch = colorbar;

if min_fit_ct < max_fit_ct

caxis([min_fit_ct max_fit_ct]);

921 end

cbfreeze(ch);

xlabel(’x’);

ylabel(’y’);

zlabel(’z’);

926 if z_dim > 1

axis([1 x_dim 1 y_dim 1 z_dim]);

else

axis([1 x_dim 1 y_dim]);

end

931 axis square;

title({[’Local Fitness of Cell Type ’ num2str(ct) ’ (3D View)’] [’t

=’ num2str(tick)]});

% create figure file name and save figure

len_num_iters = length(num2str(num_iters));

936 len_tick = length(num2str(tick));

len_pad = len_num_iters - len_tick;

pad = ’’;

for pi = 1 : len_pad

pad = strcat(’0’, pad);

941 end

fig_file = strcat(path, ’/’, ’local_fitness_3d_’, num2str(ct), ’_’,

pad, num2str(tick));
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saveas(gcf, fig_file, ’pdf’);

% delete figure

946 close(h);

end

end % function save_local_fitness_3d

951

%% plot local fitness and save them to disk

function [] = save_local_fitness(ct_range)

% cell type local fitness (2-D slice)

956 for ct = ct_range

% process only designated cell types

if ~numel(find(output_only_cell_types == ct))

continue;

961 end

% set up an invisible figure

h = figure(’Visible’, ’off’);

966 % plot the image

imagesc((occupation(:,:,mid_z) == ct) .* fitness_1(:,:,mid_z));

colormap(grade(cell_type_color_map(ct,:), 256));

cbfreeze(colorbar);

freezeColors;

971 set(gca, ’YDir’, ’normal’);
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axis square;

title({[’Local Fitness of Cell Type ’ num2str(ct)] [’t=’ num2str(

tick)]});

% create figure file name and save figure

976 len_num_iters = length(num2str(num_iters));

len_tick = length(num2str(tick));

len_pad = len_num_iters - len_tick;

pad = ’’;

for pi = 1 : len_pad

981 pad = strcat(’0’, pad);

end

fig_file = strcat(path, ’/’, ’local_fitness_’, num2str(ct), ’_’, pad

, num2str(tick));

saveas(gcf, fig_file, ’pdf’);

986 % delete figure

close(h);

end

991 end % function save_local_fitness

%% plot neighborhood fitness and save them to disk

function [] = save_neighborhood_fitness(ct_range)

996 % cell type neighborhood fitness (2-D slice)

for ct = ct_range
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% process only designated cell types

if ~numel(find(output_only_cell_types == ct))

1001 continue;

end

% set up an invisible figure

h = figure(’Visible’, ’off’);

1006

% plot the image

imagesc((occupation(:,:,mid_z) > 1) .* fitness_n(:,:,mid_z,ct));

colormap(grade(cell_type_color_map(ct,:), 256));

cbfreeze(colorbar);

1011 freezeColors;

set(gca, ’YDir’, ’normal’);

axis square;

title({[’Neighborhood Fitness of Cell Type ’ num2str(ct)] [’t=’ num2

str(tick)]});

1016 % create figure file name and save figure

len_num_iters = length(num2str(num_iters));

len_tick = length(num2str(tick));

len_pad = len_num_iters - len_tick;

pad = ’’;

1021 for pi = 1 : len_pad

pad = strcat(’0’, pad);

end

fig_file = strcat(path, ’/’, ’neighborhood_fitness_’, num2str(ct),

’_’, pad, num2str(tick));

saveas(gcf, fig_file, ’pdf’);
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1026

% delete figure

close(h);

end

1031

end % function save_neighborhood_fitness

%% plot particle concentration and save them to disk

function [] = save_particle_concentration(gray_256, pt_range)

1036

% particle type concentrations (2-D slice)

for pt = pt_range

% process only designated particle types

1041 if ~numel(find(output_only_particle_types == ct))

continue;

end

% set up an invisible figure

1046 h = figure(’Visible’, ’off’);

% plot the image

con_pt = concentration(:,:,mid_z,pt);

min_con_pt = min(min(con_pt));

1051 max_con_pt = max(max(con_pt));

mesh(con_pt);

colormap(gray_256);

min_rel = ’=’;
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if min_con_pt > 1000

1056 min_rel = ’>’;

min_con_pt = 1000;

end

max_rel = ’=’;

if max_con_pt > 1000

1061 max_rel = ’>’;

max_con_pt = 1000;

end

axis square;

xlim([1 x_dim]);

1066 ylim([1 y_dim]);

title({[’Concentration of Particle Type ’ num2str(pt)] [’t=’ num2str

(tick)] [’min’ min_rel sprintf(’%3.3f’, min_con_pt) ’, max’ max_

rel sprintf(’%3.3f’, max_con_pt)]});

% create figure file name and save figure

len_num_iters = length(num2str(num_iters));

1071 len_tick = length(num2str(tick));

len_pad = len_num_iters - len_tick;

pad = ’’;

for pi = 1 : len_pad

pad = strcat(’0’, pad);

1076 end

fig_file = strcat(path, ’/’, ’particle_concentration_’, num2str(pt),

’_’, pad, num2str(tick));

saveas(gcf, fig_file, ’pdf’);

% delete figure
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1081 close(h);

end

end % function save_particle_concentration

1086

%% plot a time series average +/- standard deviation (average curve

surrounded by +/- gray patches)

% a: average (m time series x n ticks)

% s: standard deviation (m time series x n ticks)

% c: color map (m time series x 3 {r,g,b})

1091 % b: begin time (integer)

% e: end time (integer)

function [] = plot_time_series(a, s, c, b, e)

domain = b : e;

gray = [0.9 0.9 0.9];

1096 hold on;

for t = 1 : size(a,1)

patch([domain fliplr(domain)], [a(t,domain) - s(t,domain), fliplr(a(

t,domain) + s(t,domain))], gray, ’LineStyle’, ’none’);

plot(domain, a(t,domain), ’color’, c(t,:));

end

1101 hold off;

freezeColors;

if tick > 1

xlim([1 tick]);

end;

1106 end % function plot_time_series
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%% create a color map using a basis and a granularity

% c: color map basis ([r g b])

% n: density of gradient (integer)

1111 function [q] = grade(c, n)

r = linspace(0,c(1),n)’;

g = linspace(0,c(2),n)’;

b = linspace(0,c(3),n)’;

q = horzcat(r,g,b);

1116 end % function grade

%% create a 3D Gaussian filter using a kernel and standard deviation

% k: kernel ([kernel_dim_x kernel_dim_y kernel_dim_z])

% s: standard deviation ([sigma_x sigma_y sigma_z])

1121 function [g] = gauss3(k, s)

k = floor(k/2);

[gx, gy, gz] = ndgrid(-k(1):k(1), -k(2):k(2), -k(3):k(3));

gx = gx / s(1);

gy = gy / s(2);

1126 gz = gz / s(3);

g = exp(-(gx .* gx + gy .* gy + gz .* gz) .* 0.5);

g = g / sum(g(:));

end % function gauss3

1131 %% create a random 3D binary matrix using a gradient function for density

along any combination of axis directions

% xd : x dimension

% yd : y dimension

% zd : z dimension
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% f : gradient function (f(upper)...f(lower) guaranteed to be in the

range [0,1])

1136 % d_beg: domain lower bound

% d_end: domain upper bound

% dir : direction of gradient (3-element binary vector)

function [dm] = density_grad(xd, yd, zd, f, d_beg, d_end, dir)

dm = [];

1141

domain = linspace(d_beg,d_end,xd);

target = f(domain);

dx = [];

for z_idx = 1 : zd

1146 zm = [];

for x_idx = 1 : xd

zm = horzcat(zm, rand(yd,1) < target(x_idx));

end

dx(:,:,z_idx) = zm;

1151 end

domain = linspace(d_beg,d_end,yd);

target = f(domain);

dy = [];

1156 for z_idx = 1 : zd

zm = [];

for y_idx = 1 : yd

zm = vertcat(zm, rand(1,xd) < target(y_idx));

end

1161 dy(:,:,z_idx) = zm;

end
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domain = linspace(d_beg,d_end,zd);

target = f(domain);

1166 dz = [];

for z_idx = 1 : zd

zm = rand(xd,yd) < target(z_idx);

dz(:,:,z_idx) = zm;

end

1171

if isequal(dir, [0 0 0])

dm = rand(xd,yd,zd);

elseif isequal(dir, [0 0 1])

dm = dz;

1176 elseif isequal(dir, [0 1 0])

dm = dy;

elseif isequal(dir, [0 1 1])

dm = dy & dz;

elseif isequal(dir, [1 0 0])

1181 dm = dx;

elseif isequal(dir, [1 0 1])

dm = dx & dz;

elseif isequal(dir, [1 1 0])

dm = dx & dy;

1186 elseif isequal(dir, [1 1 1])

dm = dx & dy & dz;

end

end

1191 %% initialize cell types

310



appendices

function [] = initialize_occupation()

initial_occupation_pattern;

occupation = permute(occupation, [2 1 3]);

end % function initialize_occupation

1196

%% initial occupation pattern

function [] = initial_occupation_pattern()

occupation(:, :, : ) = 2; % initialize with empty cells

occupation(mid_x, mid_y, mid_z) = 3; % place an alpha smack in the

middle

1201 for i = 1 : 100 % randomly place 100 vessels

rx = mid_x;

while rx == mid_x

rx = floor(rand * x_dim) + 1;

end

1206 ry = mid_y;

while ry == mid_y

ry = floor(rand * y_dim) + 1;

end

rz = mid_z;

1211 while rz == mid_z

rz = floor(rand * z_dim) + 1;

end

occupation(rx, ry, rz) = 1;

end

1216 end % function initial_occupation_pattern

end % function simulator
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I M A G E P R O C E S S I N G C O D E

c.1 intensity-sample-ray-bundles

function [] = intensity_sample_ray_bundles(im_filename, label, r_center, c_

center)

2

batch_mode = 1; % in batch mode, figures are invisible and

no output is displayed

im.raw = imread(im_filename); % raw image filename

r_dim = size(im.raw, 1); % row dimension of the raw image

c_dim = size(im.raw, 2); % column dimension of the raw image

7 smooth_num = 100; % number of times to smooth the gray image

smooth_mask = [5 5]; % size of mask to smooth the gray image

smooth_std = 5.0; % standard deviation of the Gaussian

function used to smooth the gray image

delta_theta_bundle = 2*pi; % angle of bundle: 2*pi (full circle => one

bundle), pi/4 (1/8 circle => 8 bundles), etc.

delta_theta = pi/40; % angle between each extended sample ray:

pi/40 => 80 rays per full circle, etc.

12 delta_rho = 1; % radial distance between intensity level

samples (number of pixels)

delta_n = 0; % radius of neighborhood over which to

average intensity levels at each sample

radius_mean_min_window = 1000; % maximum radial distance over which to

compute the global minimum mean for determining the radius of each bundle
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radius_median_min_window = 1000; % maximum radial distance over which to

compute the global minimum median for determining the radius of each bundle

max_rho_sample = ceil(sqrt(r_dim^2+c_dim^2)/delta_rho); % maximum

number of samples that each sample ray can take (for preallocating arrays)

17 max_theta_sample = ceil(2*pi/delta_theta); % maximum

number of sample rays that can fit in a circle (for preallocating arrays,

setting index limits)

max_theta_bundle = ceil(2*pi/delta_theta_bundle); % maximum

number of bundles that can fit in a circle (for setting index limits)

bundle_samples = ceil(delta_theta_bundle/delta_theta); % number of

sample rays that can fit in a bundle (for determining ranges)

center_num = numel(r_center); % number of centers to process

22 % create new results directory

path = strcat(’/tmp/analysis/gradient/’, label);

mkdir(path);

% open a data file

27 data_file = strcat(path, ’/’, ’data.txt’);

fid = fopen(data_file, ’w’);

fprintf(fid, ’number of bundles per circle = %f\n’, max_theta_bundle);

fprintf(fid, ’number of sample rays per circle = %f\n’, max_theta_sample);

32 fprintf(fid, ’\n’);

% convert RGB image to gray image

im.gray = rgb2gray(im.raw);

37 % smooth gray image
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G = fspecial(’gaussian’, smooth_mask, smooth_std);

im.smooth = im.gray;

for i = 1 : smooth_num

im.smooth = imfilter(im.smooth, G, ’replicate’, ’conv’);

42 end

% for each center, measure intensity levels using bundles of sample rays, and

plot the quantitative results for each bundle

for center_iter = 1 : center_num

47 fprintf(fid, ’center %d\n’, center_iter);

% setup

r_init = r_center(center_iter);

c_init = c_center(center_iter);

52 measurements = 256 * ones(max_rho_sample, max_theta_sample);

% measure

for theta_iter = 1 : max_theta_sample

r = r_init;

57 c = c_init;

theta = (theta_iter - 1)*delta_theta;

rho = 0;

rho_iter = 1;

while r >= 1 && r <= r_dim && c >= 1 && c <= c_dim;

62 neighbor_val = [];

neighbor_num = 1;

for rr = -delta_n : delta_n

for cc = -delta_n : delta_n
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if r+rr >= 1 && r+rr <= r_dim && c+cc >=1 && c+cc <= c_dim

67 neighbor_val(neighbor_num) = im.smooth(r+rr,c+cc);

neighbor_num = neighbor_num + 1;

end

end

end

72 val = mean(neighbor_val);

measurements(rho_iter,theta_iter) = val;

if ~batch_mode

fprintf(’%d/%d: (%d,%f) = (%d,%d): %d\n’, center_iter, center_

num, rho, theta/pi, r, c, val);

end

77 rho = rho + delta_rho;

[x, y] = pol2cart(theta, rho);

r = r_init - floor(y);

c = c_init + floor(x);

rho_iter = rho_iter + 1;

82 end

end

% compute statistics and plot

for bundle_iter = 1 : max_theta_bundle

87

fprintf(fid, ’\tbundle %d\n’, bundle_iter);

measurements_bundle_range = (bundle_iter - 1)*bundle_samples + 1 :

bundle_iter*bundle_samples;
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measurements_mean = safe_stats(@mean, measurements(:,

measurements_bundle_range)); % mean(measurements(:,measurements_

bundle_range), 2);

92 measurements_std = safe_stats(@std, measurements(:,

measurements_bundle_range)); % std(measurements(:,measurements_

bundle_range), 0, 2);

measurements_cv = measurements_std ./ measurements_mean;

measurements_median = safe_stats(@median, measurements(:,

measurements_bundle_range)); % median(measurements(:,measurements_

bundle_range), 2);

measurements_median_min_locs = find_mins(measurements_median, radius_

median_min_window);

measurements_radius = measurements_median_min_locs(1) * delta

_rho;

97 measurements_range = 1:measurements_radius;

radii(center_iter,bundle_iter) = measurements_radius;

fprintf(fid, ’\t\tradius = %d\n’, measurements_radius);

102 if batch_mode

h = figure(’Visible’, ’off’);

else

h = figure(bundle_iter);

end

107 clf;

subplot_width = 3;

% plot all trajectories, overlaid with mean and median
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112 subplot(1,subplot_width,1);

hold on;

safe_plot(measurements(measurements_range,:));

plot(measurements_mean(measurements_range), ’b’);

plot(measurements_median(measurements_range), ’r’);

117 hold off;

title([’radius=’, num2str(measurements_radius)]);

% plot the mean +/- std

fprintf(fid, ’\t\tmean statistics\n’);

122 subplot(1,subplot_width,2);

plot_time_series(measurements_mean’, measurements_std’, [0 0 1], 1,

measurements_radius);

hold on;

[seg_i, seg_j] = segmented_least_squares(measurements_range,

measurements_mean(measurements_range)’, 200);

num_segs = numel(seg_i);

127 seg_a = zeros(1,num_segs);

seg_b = zeros(1,num_segs);

seg_e = zeros(1,num_segs);

for s = 1 : num_segs

fprintf(fid, ’\t\t\tsegment %d\n’, s);

132 [seg_a(s), seg_b(s)] = least_squares_fit(measurements_range,

measurements_mean(measurements_range)’, seg_i(s), seg_j(s));

seg_e(s) = least_squares_error(measurements_range, measurements_mean

(measurements_range)’, seg_i(s), seg_j(s));

plot(measurements_range(seg_i(s):seg_j(s)), seg_a(s) .* measurements

_range(seg_i(s):seg_j(s)) + seg_b(s), ’k’);

fprintf(fid, ’\t\t\t\tbeg = %d\n’, seg_i(s));
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fprintf(fid, ’\t\t\t\tend = %d\n’, seg_j(s));

137 fprintf(fid, ’\t\t\t\tlen = %d\n’, seg_j(s) - seg_i(s) + 1);

fprintf(fid, ’\t\t\t\tslo = %f\n’, seg_a(s));

fprintf(fid, ’\t\t\t\terr = %f\n’, seg_e(s));

end

hold off;

142 title_foo = {};

for s = 1 : num_segs

title_foo{numel(title_foo)+1} = [’l=’, num2str(seg_j(s) - seg_i(s) +

1), ’, s=’, sprintf(’%0.2f’, seg_a(s)), ’, e=’, sprintf(’%0.2f

’, seg_e(s))];

end

title(title_foo);

147

% plot the median +/- std

fprintf(fid, ’\t\tmedian statistics\n’);

subplot(1,subplot_width,3);

plot_time_series(measurements_median’, measurements_std’, [1 0 0], 1,

measurements_radius);

152 hold on;

[seg_i, seg_j] = segmented_least_squares(measurements_range,

measurements_median(measurements_range)’, 200);

num_segs = numel(seg_i);

seg_a = zeros(1,num_segs);

seg_b = zeros(1,num_segs);

157 seg_e = zeros(1,num_segs);

for s = 1 : numel(seg_i)

fprintf(fid, ’\t\t\tsegment %d\n’, s);
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[seg_a(s), seg_b(s)] = least_squares_fit(measurements_range,

measurements_median(measurements_range)’, seg_i(s), seg_j(s));

seg_e(s) = least_squares_error(measurements_range, measurements_mean

(measurements_range)’, seg_i(s), seg_j(s));

162 plot(measurements_range(seg_i(s):seg_j(s)), seg_a(s) .* measurements

_range(seg_i(s):seg_j(s)) + seg_b(s), ’k’);

fprintf(fid, ’\t\t\t\tbeg = %d\n’, seg_i(s));

fprintf(fid, ’\t\t\t\tend = %d\n’, seg_j(s));

fprintf(fid, ’\t\t\t\tlen = %d\n’, seg_j(s) - seg_i(s) + 1);

fprintf(fid, ’\t\t\t\tslo = %f\n’, seg_a(s));

167 fprintf(fid, ’\t\t\t\terr = %f\n’, seg_e(s));

end

hold off;

title_foo = {};

for s = 1 : num_segs

172 title_foo{numel(title_foo)+1} = [’l=’, num2str(seg_j(s) - seg_i(s) +

1), ’, s=’, sprintf(’%0.2f’, seg_a(s)), ’, e=’, sprintf(’%0.2f

’, seg_e(s))];

end

title(title_foo);

fig_file = strcat(path, ’/’, ’blur_radius_’, num2str(center_iter), ’_

bundle_’, num2str(bundle_iter), ’.pdf’);

177 saveas(gcf, fig_file, ’pdf’);

end

end

182
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% plot the smoothed image, overlaid with centers, bundles, and bundle numbers

if batch_mode

h = figure(’Visible’, ’off’);

else

187 h = figure(bundle_iter);

end

clf;

imshow(im.smooth);

hold on;

192 for center_iter = 1 : numel(r_center)

beg_x = [];

beg_y = [];

end_x = [];

end_y = [];

197 plot(c_center(center_iter), r_center(center_iter), ’ro’);

text(c_center(center_iter) + 30, r_center(center_iter), num2str(center_iter)

, ’Color’, ’r’);

for bundle_iter = 1 : max_theta_bundle

theta_range = (bundle_iter - 1)*delta_theta_bundle : 0.01 : bundle_iter*

delta_theta_bundle;

[perim_x, perim_y] = pol2cart(theta_range, radii(center_iter,bundle_iter

));

202 plot(c_center(center_iter) + perim_x, r_center(center_iter) - perim_y, ’

r’);

[label_x, label_y] = pol2cart(theta_range(floor(numel(theta_range)/2)),

radii(center_iter,bundle_iter) + 30);

text(c_center(center_iter) + label_x, r_center(center_iter) - label_y,

num2str(bundle_iter), ’Color’, ’r’);

beg_x(bundle_iter) = c_center(center_iter) + perim_x(1);
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beg_y(bundle_iter) = r_center(center_iter) - perim_y(1);

207 end_x(bundle_iter) = c_center(center_iter) + perim_x(numel(perim_x));

end_y(bundle_iter) = r_center(center_iter) - perim_y(numel(perim_y));

end

for bundle_iter = 1 : max_theta_bundle - 1

plot([end_x(bundle_iter) beg_x(bundle_iter+1)], [end_y(bundle_iter) beg_

y(bundle_iter+1)], ’r’);

212 end

plot([end_x(bundle_iter+1) beg_x(1)], [end_y(bundle_iter+1) beg_y(1)], ’r’);

end

hold off;

fig_file = strcat(path, ’/’, ’blur_radii.pdf’);

217 saveas(gcf, fig_file, ’pdf’);

% close the data file

fclose(fid);

222 return;

%% plot a time series average +/- standard deviation (average curve

surrounded by +/- gray patches)

% a: average (m time series x n ticks)

% s: standard deviation (m time series x n ticks)

227 % c: color map (m time series x 3 {r,g,b})

% b: begin time (integer)

% e: end time (integer)

function [] = plot_time_series(a, s, c, b, e)

domain = b : e;

232 gray = [0.9 0.9 0.9];
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hold on;

for t = 1 : size(a,1)

patch([domain fliplr(domain)], [a(t,domain) - s(t,domain), fliplr(a(

t,domain) + s(t,domain))], gray, ’LineStyle’, ’none’);

plot(domain, a(t,domain), ’color’, c(t,:));

237 end

hold off;

end % function plot_time_series

function [l] = find_mins(a, w)

242 [m, l] = min(a(1:w));

end

function [F] = safe_stats(f, M)

num_r = size(M,1);

247 num_c = size(M,2);

F = [];

for r = 1 : num_r

safe_set = [];

for c = 1 : num_c

252 if M(r,c) ~= 256

safe_set(numel(safe_set)+1) = M(r,c);

end

end

F(r,1) = f(safe_set);

257 end

end

function [] = safe_plot(M)
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num_r = size(M,1);

262 num_c = size(M,2);

for c = 1 : num_c

for r = 1 : num_r

if M(r,c) == 256

break;

267 end

end

safe_r_idx = r - 1;

plot(1:safe_r_idx, M(1:safe_r_idx, c), ’Color’, [0.9 0.9 0.9]);

end

272 end

end

c.2 quad-tree

1 function [] = quad_tree(im_filename)

%% load image

im.raw = imread(im_filename);

im.gray = rgb2gray(im.raw);

6 r_dim = size(im.raw, 1);

c_dim = size(im.raw, 2);

%% smooth image

smooth_num = 100;
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11 G = fspecial(’gaussian’, [5 5], 5.0);

im.smooth = im.gray;

for i = 1 : smooth_num

im.smooth = imfilter(im.smooth, G, ’replicate’, ’same’, ’conv’);

end

16

%% quad tree

r_range = 1:r_dim;

c_range = 1:c_dim;

I = im.smooth(r_range,c_range);

21

fh=figure;

imshow(I);

hold on;

dissect(I, 1, 1, 0, @(x) std(x)/mean(x), 0.02, 1);

26 hold off;

function [] = draw_cross(r, c, rs, cs)

hrs = floor(rs/2);

hcs = floor(cs/2);

31 plot(c+hcs, r:r+rs, ’r’); % NS

plot(c:c+cs, r+hrs, ’r’); % EW

end

%% recursively dissect a rectangle

36 % I: 2-D image matrix

% r: row coordinate of NW corner of rectangle

% c: col coordinate of NW corner of rectangle

% d: depth of recursion (0-based ply)
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% f: function handle for rectangle pixel evaluation function

41 % t: threshold value in excess which will trigger further dissection

% x: draw cross predicate

function [] = dissect(I, r, c, d, f, t, x)

if 2^d > min(size(I))

return;

46 end

rs = floor(size(I,1) / 2^d);

cs = floor(size(I,2) / 2^d);

r_range = r : r+rs-1;

c_range = c : c+cs-1;

51 W = I(r_range,c_range);

v = double(reshape(W, 1, rs*cs));

if f(v) > t

if x

draw_cross(r, c, rs, cs);

56 end

hrs = floor(rs/2);

hcs = floor(cs/2);

dissect(I, r, c, d+1, f, t, x);

dissect(I, r+hrs, c, d+1, f, t, x);

61 dissect(I, r, c+hcs, d+1, f, t, x);

dissect(I, r+hrs, c+hcs, d+1, f, t, x);

end

end

66 end
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c.3 ply-stats-quad-tree

function [] = ply_stats_quad_tree(im_filename, label)

%% setup

4

batch_mode = 1; % in batch mode, figures are invisible and no output is

displayed

im.raw = imread(im_filename); % raw image

r_dim = size(im.raw, 1); % row dimension of the raw image

c_dim = size(im.raw, 2); % column dimension of the raw image

9 smooth_num = 100; % number of times to smooth the gray image

smooth_mask = [5 5]; % size of mask to smooth the gray image

smooth_std = 5.0; % standard deviation of the Gaussian function used to

smooth the gray image

%% preprocessing

14

% create new results directory

base_path = ’/tmp/analysis/quadtree’;

full_path = strcat(base_path, ’/’, label);

if ~exist(base_path, ’dir’)

19 mkdir(base_path);

end

if ~exist(full_path, ’dir’)

mkdir(full_path);

end

24
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% open global and local data files

loc_data_file = strcat(full_path, ’/’, ’data.txt’);

loc_fid = fopen(loc_data_file, ’w’);

29 % convert RGB image to gray image

im.gry = rgb2gray(im.raw);

% smooth gray image

G = fspecial(’gaussian’, smooth_mask, smooth_std);

34 im.smo = im.gry;

for i = 1 : smooth_num

im.smo = imfilter(im.smo, G, ’replicate’, ’conv’);

end

39 %% quad tree

r_range = 1:r_dim;

c_range = 1:c_dim;

I = im.smo(r_range,c_range);

44 %% ply-by-ply quadtree

% ply 1 is whole image

% ply 2 is 1/4 of whole image

% ply q is (1/4)^(q-1) of whole image

% for each trial value of CV in [0.01 : 0.01 : 0.10] report statistics for

each ply’s set of windows

49 ply.n = zeros(1,10);

ply.sum = zeros(1,10);

ply.mean = zeros(1,10);

ply.median = zeros(1,10);
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ply.std = zeros(1,10);

54 ply.cv = zeros(1,10);

ply.hist = zeros(12,10);

for t_iter = 1 : 10

t = t_iter * 0.01;

fprintf(’Processing t=%f\n’, t);

59 ply.data = [];

dissect(I, 1, 1, 0, @(x) std(x)/mean(x), t, 0);

ply.n(t_iter) = numel(ply.data);

ply.sum(t_iter) = sum(ply.data);

ply.mean(t_iter) = mean(ply.data);

64 ply.median(t_iter) = median(ply.data);

ply.std(t_iter) = std(ply.data);

ply.cv(t_iter) = ply.std / ply.mean;

for p_iter = 1 : 12

ply.hist(t_iter,p_iter) = sum(ply.data == p_iter);

69 end

end

%% write data

74 head = strcat(label, ’\t’);

for t_iter = 1 : 10

glo_data_file = strcat(base_path, ’/’, ’data_’, num2str(t_iter), ’.txt’);

glo_fid = fopen(glo_data_file, ’a’);

79 fprintf(glo_fid, head);

fprintf(glo_fid, ’%d\t’, ply.hist(t_iter,:));

fprintf(glo_fid, ’\n’);
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fclose(glo_fid);

end

84

fprintf(loc_fid, head);

fprintf(loc_fid, ’%d\t’, ply.n);

fprintf(loc_fid, ’\n’);

fprintf(loc_fid, head);

89 fprintf(loc_fid, ’%d\t’, ply.sum);

fprintf(loc_fid, ’\n’);

fprintf(loc_fid, head);

fprintf(loc_fid, ’%f\t’, ply.mean);

fprintf(loc_fid, ’\n’);

94 fprintf(loc_fid, head);

fprintf(loc_fid, ’%d\t’, ply.median);

fprintf(loc_fid, ’\n’);

fprintf(loc_fid, head);

fprintf(loc_fid, ’%f\t’, ply.std);

99 fprintf(loc_fid, ’\n’);

fprintf(loc_fid, head);

fprintf(loc_fid, ’%f\t’, ply.cv);

fprintf(loc_fid, ’\n’);

for t_iter = 1 : 10

104 fprintf(loc_fid, head);

fprintf(loc_fid, ’%d\t’, ply.hist(t_iter,:));

fprintf(loc_fid, ’\n’);

end

109 % close the local data file

fclose(loc_fid);
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return;

114 function [] = draw_cross(r, c, rs, cs)

hrs = floor(rs/2);

hcs = floor(cs/2);

plot(c+hcs, r:r+rs, ’r’); % NS

plot(c:c+cs, r+hrs, ’r’); % EW

119 end

%% recursively dissect a rectangle

% I: 2-D image matrix

% r: row coordinate of NW corner of rectangle

124 % c: col coordinate of NW corner of rectangle

% d: depth of recursion (0-based ply)

% f: function handle for rectangle pixel evaluation function

% t: threshold value in excess which will trigger further dissection

% x: draw cross predicate

129 function [] = dissect(I, r, c, d, f, t, x)

if 2^d > min(size(I))

ply.data(numel(ply.data)+1) = d;

return;

end

134 rs = floor(size(I,1) / 2^d);

cs = floor(size(I,2) / 2^d);

r_range = r : r+rs-1;

c_range = c : c+cs-1;

W = I(r_range,c_range);

139 v = double(reshape(W, 1, rs*cs));
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if f(v) > t

if x

draw_cross(r, c, rs, cs);

end

144 hrs = floor(rs/2);

hcs = floor(cs/2);

dissect(I, r, c, d+1, f, t, x);

dissect(I, r+hrs, c, d+1, f, t, x);

dissect(I, r, c+hcs, d+1, f, t, x);

149 dissect(I, r+hrs, c+hcs, d+1, f, t, x);

else

ply.data(numel(ply.data)+1) = d;

end

end

154

end

c.4 epc-signature

function [] = epc_signature(im_filename, label)

%% setup

5 batch_mode = 1; % in batch mode, figures are invisible and no output is

displayed

seg_cost = 50000; % cost to add a segment in the segmented least squares

algorithm
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im.raw = imread(im_filename); % raw image

r_dim = size(im.raw, 1); % row dimension of the raw image

c_dim = size(im.raw, 2); % column dimension of the raw image

10 gray_lim = 255; % maximum intensity level in an 8-bit image

x = 1:gray_lim; % the intensity range in an 8-bit image

%% preprocessing

15 % create new results directory

base_path = ’/tmp/analysis/epc’;

full_path = strcat(base_path, ’/’, label);

if ~exist(base_path, ’dir’)

mkdir(base_path);

20 end

if ~exist(full_path, ’dir’)

mkdir(full_path);

end

25 % open global and local data files

glo_data_file = strcat(base_path, ’/’, ’data.txt’);

glo_fid = fopen(glo_data_file, ’a’);

loc_data_file = strcat(full_path, ’/’, ’data.txt’);

loc_fid = fopen(loc_data_file, ’w’);

30

% convert RGB image to gray image

im.gry = rgb2gray(im.raw);

%% compute EPC curve for gray image

35
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fprintf(glo_fid, ’%s\t’, label);

fprintf(loc_fid, ’%s\t’, label);

chi = zeros(1,gray_lim);

for i = 1 : gray_lim

40 im.bin = im2bw(im.gry, i/gray_lim);

[chi(i), l] = imEuler2d(im.bin);

fprintf(glo_fid, ’%d\t’, chi(i));

fprintf(loc_fid, ’%d\t’, chi(i));

end

45

%% compute segmented least-squares fit

[seg_i, seg_j] = segmented_least_squares(x, chi, seg_cost);

num_segs = numel(seg_i);

seg_a = zeros(1,num_segs);

50 seg_b = zeros(1,num_segs);

seg_e = zeros(1,num_segs);

compression_factor = gray_lim/(2*num_segs);

fprintf(glo_fid, ’%d\t%f\t’, num_segs, compression_factor);

fprintf(loc_fid, ’%d\t%f\t’, num_segs, compression_factor);

55 for s = 1 : num_segs

[seg_a(s), seg_b(s)] = least_squares_fit(x, chi, seg_i(s), seg_j(s));

seg_e(s) = least_squares_error(x, chi, seg_i(s), seg_j(s));

end

tot_err = sum(seg_e);

60 norm_err = tot_err / gray_lim;

fprintf(glo_fid, ’%f\t%f\t’, tot_err, norm_err);

fprintf(loc_fid, ’%f\t%f\t’, tot_err, norm_err);

for s = 1 : num_segs

fprintf(glo_fid, ’%f\t%f’, seg_a(s), seg_b(s));
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65 fprintf(loc_fid, ’%f\t%f’, seg_a(s), seg_b(s));

if s ~= num_segs

fprintf(glo_fid, ’\t’);

fprintf(loc_fid, ’\t’);

end

70 end

fprintf(glo_fid, ’\n’);

fprintf(loc_fid, ’\n’);

%% plot EPC curve for gray image

75

if batch_mode

h = figure(’Visible’, ’off’);

else

h = figure;

80 end

clf;

hold on;

plot(x, chi, ’b’);

for s = 1 : numel(seg_i)

85 plot(x(seg_i(s):seg_j(s)), seg_a(s) .* x(seg_i(s):seg_j(s)) + seg_b(s), ’r’)

;

end

hold off;

fig_file = strcat(full_path, ’/’, ’epc_signature.pdf’);

saveas(gcf, fig_file, ’pdf’);

90

% close the data files

fclose(glo_fid);
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fclose(loc_fid);

95 return;

end

c.5 multithreshold-segmentation

function [] = multithreshold_segmentation(im_filename, label)

3 %% setup

batch_mode = 1; % in batch mode, figures are invisible and no output is

displayed

im.raw = imread(im_filename); % raw image

r_dim = size(im.raw, 1); % row dimension of the raw image

8 c_dim = size(im.raw, 2); % column dimension of the raw image

smooth_num = 100; % number of times to smooth the gray image

smooth_mask = [5 5]; % size of mask to smooth the gray image

smooth_std = 5.0; % standard deviation of the Gaussian function used to

smooth the gray image

13 %% preprocessing

% create new results directory

base_path = ’/tmp/analysis/segment’;

full_path = strcat(base_path, ’/’, label);
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18 if ~exist(base_path, ’dir’)

mkdir(base_path);

end

if ~exist(full_path, ’dir’)

mkdir(full_path);

23 end

% open global and local data files

glo_data_file = strcat(base_path, ’/’, ’data.txt’);

glo_fid = fopen(glo_data_file, ’a’);

28 loc_data_file = strcat(full_path, ’/’, ’data.txt’);

loc_fid = fopen(loc_data_file, ’w’);

% convert RGB image to gray image

im.gry = rgb2gray(im.raw);

33

% smooth gray image

G = fspecial(’gaussian’, smooth_mask, smooth_std);

im.smo = im.gry;

for i = 1 : smooth_num

38 im.smo = imfilter(im.smo, G, ’replicate’, ’conv’);

end

%% segment gray image

43 thresh = multithresh(im.gry, 2);

im.seg = imquantize(im.gry, thresh);

im.hyp = im.seg == 1;

im.via = im.seg == 2;
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im.nec = im.seg == 3;

48 num_pix = r_dim * c_dim;

num_hyp = sum(sum(im.hyp));

num_via = sum(sum(im.via));

num_nec = sum(sum(im.nec));

fprintf(glo_fid, ’%s\t%d\t%d\t%d\t%d\t%d\t%d\t’, label, num_pix, thresh(1),

thresh(2), num_hyp, num_via, num_nec);

53 fprintf(loc_fid, ’%s\t%d\t%d\t%d\t%d\t%d\t%d\t’, label, num_pix, thresh(1),

thresh(2), num_hyp, num_via, num_nec);

%% plot gray and segmented-gray images side-by-side

if batch_mode

58 h = figure(’Visible’, ’off’);

else

h = figure;

end

im.rgb = label2rgb(im.seg);

63 imshowpair(im.gry, im.rgb, ’montage’);

fig_file = strcat(full_path, ’/’, ’segmented_gray.pdf’);

saveas(gcf, fig_file, ’pdf’);

%% segment smooth image

68

thresh = multithresh(im.smo, 2);

im.seg = imquantize(im.smo, thresh);

im.hyp = im.seg == 1;

im.via = im.seg == 2;

73 im.nec = im.seg == 3;
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num_pix = r_dim * c_dim;

num_hyp = sum(sum(im.hyp));

num_via = sum(sum(im.via));

num_nec = sum(sum(im.nec));

78 fprintf(glo_fid, ’%d\t%d\t%d\t%d\t%d\n’, thresh(1), thresh(2), num_hyp, num_via,

num_nec);

fprintf(loc_fid, ’%d\t%d\t%d\t%d\t%d\n’, thresh(1), thresh(2), num_hyp, num_via,

num_nec);

%% plot smooth and segmented-smooth images side-by-side

83 if batch_mode

h = figure(’Visible’, ’off’);

else

h = figure;

end

88 im.rgb = label2rgb(im.seg);

imshowpair(im.smo, im.rgb, ’montage’);

fig_file = strcat(full_path, ’/’, ’segmented_smooth.pdf’);

saveas(gcf, fig_file, ’pdf’);

93 % close the data files

fclose(glo_fid);

fclose(loc_fid);

return;

98

end
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S TAT I S T I C A L M O D E L C H E C K I N G A N D A D A P T I V E S A M P L I N G

C O D E

d.1 bayesian statistical model checking

1 function [h, n, x] = bayesian_statistical_model_checking(phi, theta, T, g)

% phi in BLTL (or modal logic)

% [useless here; this code uses a random indicator variable to simulate

binary outcome of M satisfying phi]

% theta in (0,1)

6 % T > 1

% g prior density g for unknown parameter p

% [useless here; this code uses a beta distribution parameterized by alpha

and beta]

p = 0.99; % the unknown actual probability of M satisfying phi

11 alpha = 1; % first parameter of Beta distribution

beta = 1; % second parameter of Beta distribution

n = 0; % number of Bernoulli trials performed so far

x = 0; % number of successful Bernoulli trials performed so far

16

while 1

n = n + 1;
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sigma = rand < p; % perform a Bernoulli trial based on a simple random

variable, based on p

if sigma

21 x = x + 1;

end

fprintf(’n=%d, x=%d\n’, n, x);

B = bayes_factor(n, x);

if B > T

26 h = 0;

return;

elseif B < 1/T

h = 1;

return;

31 end

end

function [b] = bayes_factor(n, x)

F = betacdf(theta, n + alpha, n - x + beta);

36 b = (1 / F) - 1;

return;

end

end

d.2 mc-boost

function [] = monte_carlo_boost(d, m, s, w)
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% d = number of dimensions

% m = number of samples

5 % s = sigma of Gaussian reward/penalty function

% w = weight of Gaussian reward/penalty function

t = zeros(m,d); % coordinates of ’true’ samples

f = zeros(m,d); % coordinates of ’false’ samples

10 nt = 0; % number of true samples so far

nf = 0; % number of false samples so far

x = 0:0.001:1; % dimension axis

cum_x = ones(d,numel(x)); % cumulative (unnormalized) PDFs

cum_a = ones(d,1); % cumulative PDF areas

15 norm_x = zeros(d,numel(x)); % normalized PDFs

% initialize the normalized PDFs

for j = 1 : d

norm_x(j,:) = cum_x(j,:)/cum_a(j);

20 end

% adaptively sample points according to evolving normalized PDFs

for i = 1 : m

25 % sample d coordinates according to d normalized PDFs

for j = 1 : d

q(j) = sample(x,norm_x(j,:),1,1);

end

30 % render a result according to a decision process
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r = decision(q);

% if the result is true...

if r

35

% record the true sample in the appropriate place

nt = nt + 1;

t(nt,:) = q;

40 % place a Gaussian reward upon each axis, centered at each

% corresponding coordinate, having inputted sigma

for j = 1 : d

cum_x(j,:) = cum_x(j,:) + w * normpdf(x,q(j),s);

cum_a(j) = cum_a(j) + w * (normcdf(1,q(j),s) - normcdf(0,q(j),s)

);

45 end

else

% record the false sample in the appropriate place

50 nf = nf + 1;

f(nf,:) = q;

end

55 % normalize the evolved PDFs

for j = 1 : d

norm_x(j,:) = cum_x(j,:)/cum_a(j);

end
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60 end

% plot the results

figure(1);

clf;

65

subplot(1,2,1);

hold on;

scatter(t(1:nt,1), t(1:nt,2), 50, ’r’, ’fill’);

scatter(f(1:nf,1), f(1:nf,2), 50, ’b’, ’fill’);

70 hold off;

xlim([0 1]);

ylim([0 1]);

axis square;

75 subplot(1,2,2);

hold on;

plot(x, norm_x(1,:));

plot(norm_x(2,:), x);

hold off;

80 xlim([0 1]);

ylim([0 1]);

axis square;

% decision process

85 function [r] = decision(q)

if (q(1) > 0.3 && q(1) < 0.7 && q(2) > 0.1 && q(2) < 0.4) | (sqrt((0.8-q

(1))^2 + (0.8-q(2))^2) < 0.1)
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r = 1;

else

r = 0;

90 end

end

% sample an arbitrary distribution, defined by y along x,

% returning an r-by-c matrix of sample

95 function [rx] = sample(x,y,r,c)

max_y = max(y);

rx = zeros(r*c,1);

for sn = 1 : r*c

while 1

100 sx = rand;

sy = rand * max_y;

if sy <= interp1(x,y,sx)

break;

end

105 end

rx(sn) = sx;

end

rx = reshape(rx,r,c);

end

110

end
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d.3 mc-walk

function [] = monte_carlo_walk(d, m, p, n)

% d = number of dimensions

4 % m = number of samples

% p = diffusion rate

% n = number of random walks

t = zeros(m,d); % coordinates of ’true’ samples

9 f = zeros(m,d); % coordinates of ’false’ samples

nt = 0; % number of true samples so far

nf = 0; % number of false samples so far

x = 0:0.001:1; % dimension axis

cum_x = ones(d,numel(x)); % cumulative (unnormalized) PDFs

14 cum_a = ones(d,1); % cumulative PDF areas

norm_x = zeros(d,numel(x)); % normalized PDFs

% initialize the normalized PDFs

for j = 1 : d

19 norm_x(j,:) = cum_x(j,:)/cum_a(j);

end

% adaptively sample points according to evolving normalized PDFs

for i = 1 : m

24

% sample d coordinates according to d normalized PDFs

for j = 1 : d
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q(j) = sample(x,norm_x(j,:),1,1);

end

29

% render a result according to a decision process

r = decision(q);

% if the result is true...

34 if r

% record the true sample in the appropriate place

nt = nt + 1;

t(nt,:) = q;

39

for k = 1 : n

% walk q

q = walk(q);

44

% render a result according to a decision process

r = decision(q);

% if the result is true...

49 if r

% record the true sample in the appropriate place

nt = nt + 1;

t(nt,:) = q;

54

else
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% record the false sample in the appropriate place

nf = nf + 1;

59 f(nf,:) = q;

end

end

64

else

% record the false sample in the appropriate place

nf = nf + 1;

69 f(nf,:) = q;

end

end

74

% plot the results

figure(1);

clf;

hold on;

79 scatter(t(1:nt,1), t(1:nt,2), 5, ’r’, ’fill’);

scatter(f(1:nf,1), f(1:nf,2), 5, ’b’, ’fill’);

hold off;

xlim([0 1]);

ylim([0 1]);

84 axis square;
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% decision process

function [r] = decision(q)

if (q(1) > 0.3 && q(1) < 0.7 && q(2) > 0.1 && q(2) < 0.4) | (sqrt((0.8-q

(1))^2 + (0.8-q(2))^2) < 0.1)

89 r = 1;

else

r = 0;

end

end

94

% sample an arbitrary distribution, defined by y along x,

% returning an r-by-c matrix of sample

function [rx] = sample(x,y,r,c)

max_y = max(y);

99 rx = zeros(r*c,1);

for sn = 1 : r*c

while 1

sx = rand;

sy = rand * max_y;

104 if sy <= interp1(x,y,sx)

break;

end

end

rx(sn) = sx;

109 end

rx = reshape(rx,r,c);

end

348



appendices

% walk the walk

114 function [wq] = walk(q)

wq = q;

for wi = 1 : d

wq(wi) = wq(wi) + randn() * sqrt(2*p);

end

119 end

end

d.4 mean-variance thresholding

function [sample_mean, sample_std, sample_cv, n] = mean_variance_thresholding(cv

_thresh, trial_lower_thresh, trial_upper_thresh)

% cv_thresh = CV lower threshold at which to stop

4 % trial_lower_thresh = lower bound on the number of trials

% trial_upper_thresh = upper bound on the number of trials

n = 0;

sample_cv = Inf;

9 sample = zeros(1, trial_upper_thresh);

while n < trial_upper_thresh

if sample_cv < cv_thresh && n > trial_lower_thresh

return;

14 end
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n = n + 1;

sample(n) = 0.5 + 0.1 * randn();

sample_mean = mean(sample(1:n));

sample_std = std(sample(1:n));

19 sample_cv = abs(sample_std / sample_mean);

fprintf(’%d: mean=%f, std=%f, cv=%f\n’, n, sample_mean, sample_std, sample_

cv);

end

end

d.5 mc-branch-and-bound

function [] = branch_and_bound()

2

%% load image

im.gray = create_image(1000);

r_dim = size(im.gray, 1);

c_dim = size(im.gray, 2);

7

%% smooth image

smooth_num = 100;

G = fspecial(’gaussian’, [5 5], 5.0);

12 im.smooth = im.gray;

for i = 1 : smooth_num

im.smooth = imfilter(im.smooth, G, ’replicate’, ’same’, ’conv’);
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end

17 %% quadtree implementing branch-and-bound

T = 0;

r_range = 1:r_dim;

c_range = 1:c_dim;

I = im.smooth(r_range,c_range);

22

fh=figure;

imshow(I);

hold on;

dissect(I, 1, 1, 0, 6, 128, 1);

27 hold off;

function [] = draw_cross(r, c, rs, cs)

hrs = floor(rs/2);

hcs = floor(cs/2);

32 plot(c+hcs, r:r+rs, ’r’); % NS

plot(c:c+cs, r+hrs, ’r’); % EW

end

%% recursively dissect a rectangle

37 % I: 2-D image matrix

% r: row coordinate of NW corner of rectangle

% c: col coordinate of NW corner of rectangle

% d: depth of recursion (0-based ply)

% n: depth cutoff (0-based ply)

42 % s: number of samples to take inside of rectangle

% x: draw cross predicate
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function [] = dissect(I, r, c, d, n, s, x)

if 2^d > min(size(I))

return;

47 end

rs = floor(size(I,1) / 2^d);

cs = floor(size(I,2) / 2^d);

r_range = r : r+rs-1;

c_range = c : c+cs-1;

52 W = I(r_range,c_range);

[min_sample, max_sample] = sample(W, r, r+rs-1, c, c+cs-1, floor(s / 2^d

));

if min_sample > T

T = min_sample;

end

57 if max_sample > 0 && max_sample >= T && d < n

if x

draw_cross(r, c, rs, cs);

end

hrs = floor(rs/2);

62 hcs = floor(cs/2);

dissect(I, r, c, d+1, n, s, x);

dissect(I, r+hrs, c, d+1, n, s, x);

dissect(I, r, c+hcs, d+1, n, s, x);

dissect(I, r+hrs, c+hcs, d+1, n, s, x);

67 end

end

% decision process

function [r] = decision(q)
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72 if (q(1) > 0.3 && q(1) < 0.7 && q(2) > 0.1 && q(2) < 0.4) | (sqrt((0.8-q

(1))^2 + (0.8-q(2))^2) < 0.1)

r = 1;

else

r = 0;

end

77 end

% create a binary image based in the decision process

function [i] = create_image(p)

i = zeros(p, p);

82 for r = 1 : p

for c = 1 : p

y = p - r;

x = c;

nx = x / p;

87 ny = y / p;

i(r,c) = 255 * decision([nx ny]);

end

end

end

92

function [min_sampled_w, max_sampled_w] = sample(w, r_beg, r_end, c_beg, c_

end, num_samples)

min_sampled_w = Inf;

max_sampled_w = 0;

for sample_idx = 1 : num_samples

97 sample_r_idx = floor((r_end - r_beg + 1) * rand()) + 1;

sample_c_idx = floor((c_end - c_beg + 1) * rand()) + 1;
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sample = w(sample_r_idx, sample_c_idx);

if sample < min_sampled_w

min_sampled_w = sample;

102 end

if sample > max_sampled_w

max_sampled_w = sample;

end

end

107 end

end
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