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Moran Model Simulating a Primordial World  
 
We construct a more concrete Moran model, a population simulation where the number of 
organisms is held constant throughout the simulation. As organisms reproduce, they 
randomly replace another organism in the population. The reproductive rate of the 
organisms is governed by their fitness (see below). The model we implemented begins with 
100 organisms with random genome sequence and a genetic code of all stop codons. The 
genetic code of an organism is a circular array of length 9, where each location (codon 
sequence) in the array maps to either a red or green amino acid or stop codon. The genome 
is a linear array of up to 25 codons. 
 
During each translation step, the genome is translated into a string of amino acids and stop 
codons via the genetic code. During this process, a codon may receive the amino acid 
encoded by one of its neighbors in code space with a probability of 0.05. At the end of the 
translation step, the polypeptide sequence is evaluated. The longest polypeptide of sequence 
{red-green-}N-stop adds N points toward an organism’s reproductive score. Other 
polypeptides are considered incidental and do not add to the reproductive score; however, 
during each translation step each organism receives 1 point toward its reproductive score 
because we assume its RNA has replicative function even in the absence of protein synthesis. 
Over multiple translation steps, each organism accumulates points toward its reproductive 
score. When it reaches a threshold of 100 points, the organism produces a daughter cell by 
replacing a random organism in the population. During replication, each codon in the 
genetic code encodes a different amino acid or stop codon with probability 0.01 per codon 
per replication, and each position in the genome mutates to a different codon with 
probability 0.01 per codon per replication. This process allows for the coevolution of the 
genetic code and the genome. Each trial of the simulation was run for 40,000 translation 
steps. 
 
We note that another way in which our simulation differs from previous ones [2][3] is that 
the pressure to minimize genetic code entropy comes from competition between tRNAs 
during translation and not from mutation. This difference stems from a choice to consider 
error minimization from the perspective of robustness with regard to tRNA wobble and 
other thermodynamic effects rather than closeness in mutational space. 
 
Results 
 
We start from a simple pooling equilibrium, in which all codons are assigned to stop 
instructions, and genomes are random codon strings. During the course of the simulation, 
organisms are reproductively favored if they synthesize polypeptides of a certain pattern. We 
simplify the genetic code as a one-dimensional ring. During the translation process a signal 
for any particular codon in the ring may be misread as a signal for one of the neighboring 



codons in code space. As in other studies [3], such a simplification allows us to view many of 
features of a real genetic code without specifying base pairs and positions, which may have 
varying substitution rates based on complex thermodynamic and copy number effects. 
During replication, a codon in the genome may mutate to any random codon at a rate of 
0.01 per position per replication, and the genetic code may change one of its assignments to 
a random amino acid or stop codon with a probability of 0.01 per codon per replication. 
These rates are relatively high because we assume that prior to the advent of protein 
translation and replication machinery, the frequency of errors might have been higher. 
  
We quantify the entropy of the genetic code based on the likelihood that an incorrect amino 
acid will be incorporated during the translation process (Figure S4A: Genetic Code 
Assignments). After 100 trials, the genetic codes of organisms at the end of the simulation 
have low entropy when compared to random codes (Figure S4B,C). For illustrative purposes, 
the dominant lineage from one simulation is shown in Figure S5A. In this example the 
genetic code goes through a diversifying step followed by a consolidation step, at the end of 
which neighbor codons tend to code similar amino acids, as expected [1][3][4][5]. The 
consolidation step is the result of a single common ancestor emerging as the dominant 
organism in the population, although its spread can be attributed to either drift or fitness 
advantage. Thus, during the diversification step, there is also a wider degree of heterogeneity 
in the codes of the population as a whole, in agreement with the stochastic simulations 
presented in the main text. In addition, there is a wider degree of genomic heterogeneity 
during the diversification step, as the variety in genetic codes allows for greater 
experimentation with different genomes. 
 
Further reduction in entropy is afforded by codon usage bias in the genome, as expected 
from observations of real genomes [6]. In our simulations, the equal and concentrated 
presence of both red and green amino acids manifests as a large and equal representation of 
those amino acids in code space. By contrast, the stop codon, which is used only once during 
the translation of a long peptide, tends to assume a smaller portion of code space.  
  
In this setting, proteome length increases when codons abutting an existing gene mutate so 
that they encode amino acids in a proper sequence, which lengthens the protein-encoding 
gene (See Figure S4A: Proteome). A plot of the length of the longest encoded protein as a 
function of the entropy of the genetic code is shown in Figure S4C. As expected, longer 
genes do not emerge if the genetic code is not accurate enough to translate them properly. As 
shown by the red points in Figure S5C, dominant species at the end of the simulation tend 
to have long genes and genetic codes that are error-minimizing when compared to random 
codes. The range of entropy values observed reflect the tension between the need to encode a 
diversity of amino acids and the need to reduce entropy; this finding accords with previous 
theoretical studies [4][5].  
 
In 66% of 100 trials, 80% or more of the organisms at the end of the simulation used only 
one genetic code. In the vast majority of these cases, the organisms not using the dominant 
code were related to a common ancestor using the same code and varied by one mutation. 



Universality of the genetic code was established at some point in time in virtually every trial; 
however, in many cases after universality was established other derivative genetic codes 
emerged, most likely a result of the fact that genome length in our simulations was bounded 
to be at most 25 codons. Thus a simpler theory without a need to enforce horizontal gene 
transfer may suffice to explain universality.  
 
 
Availability 
 
The code used to implement the mathematics described in the main text and simulation 
described here is freely available at: http://bioinformatics.nyu.edu/projects/genetic-code/ 
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Figure S1. Simulations with two possible conventional signaling equilibria with different 
error tolerance. (A) Here, species may have one of two possible genetic codes, A and B, and 
possible proteome lengths 10, 20... 100. Code B (E=0.010) is error minimizing relative to 
Code A (E=0.015). It is possible to mutate from code B to code A (and vice versa) with a 
point mutation in a single tRNA. (B) The number of organisms of a given genetic code (A or 
B) is plotted against time, starting with one organism of A, proteome length=10. The plot 
titled “Normal” uses the same parameters as in Figure 2. Similarly, “Error(A) = Error(B)” 
depicts a simulation in which Code B has the same E value as Code A. “Low code mutation 
rate” depicts a simulation in which µμ!=0.1. “High code mutation rate” depicts a simulation 
in which µμ! =4. “Low genome length mutation rate” depicts a simulation in which 
µμ!"#$%! =0.01. “High genome length mutation rate” depicts a simulation in which 
µμ!"#$%!=0.5. 
  



Figure S2. A species map depicts three genetic codes. Code B and B* (E=0.010) are error 
minimizing relative to Code A (E=0.015). It is possible to mutate from code B to code A 
(and vice versa) and from B* to A (and vice versa) with a single tRNA mutation. Organisms 
with both codes may acquire genomes of longer length according to the dynamics previously 
described. In the six subplots shown, the number of organisms of a given genetic code (A, B 
or B*) is plotted against time, using the same parameters described in Figure S1. 
  



Figure S3. Stochastic simulations run according to the same setup as the simulation in Figure 
1, but with varying carrying capacities, K. In the top row, the genetic codes present in the 
population at a given time (as represented by their error value E) are shown across time for 
three different simulations, K=100, K=1000 as in Figure 1, and K=10000. In the bottom 
row, a snapshot of the population levels at the end of each simulation is shown according to 
the species map in Figure 1. 
  



Figure S4. A) Schematic of a protocellular environment in which self-reproducing RNA 
vesicles containing both proto-mRNA (Genome) and proto-tRNA (Genetic Code) are 
immersed in a pool of highly concentrated amino acids (See SI: Primordial World 
Simulation for details). Genetic Code Assignments. The codon-amino acid assignments for 
one lineage are represented by a one-dimensional array. Any codon may substitute for its 
neighbors in code space with 5% probability. The genetic code assignments across 
generational time trend toward clustering similar amino acid assignments in blocks to reduce 
entropy, as well as reducing the representation of stop codons, which are used infrequently. 
To understand the evolution of proteome complexity, the longest protein encoded by the 
genome given the genetic code assignments above is recorded across generational time. B) 
The entropy for 10,000 randomly assigned genetic codes is shown for comparison with 
error-minimizing codes, which evolved in (C). C) Dominant species’ genetic code entropy 
and encoded protein length from the end of 100 simulations are shown in red. Similar points 
from all ancestors of those final species are shown in blue. 
 


