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1 METHODS

Our application, called AFM Explorer, uses the wxWid-
gets1 and OpenCV2 libraries. It provides a graphical user
interface (GUI) that allows the user to adjust image
processing parameters (e.g. select from a set of intensity
value thresholding methods and values), adjust the nm

pixel
image density factor, process an AFM image, and save
the image at different steps of processing. Loading an
AFM image places it in central view. Once the appli-
cation runs the image through the image processing
pipeline, it displays in separate tabbed views the skele-
tonized molecules and the final backbone contours, and
in a separate area it lists the computed backbone contour
lengths. The user can click on list entries to highlight the
associated molecules in each image view, or vice-versa,
allowing the user to establish a clear correspondence
between visual and numerical results.

1.1 AFM Explorer image processing pipeline

We outline the steps of AFM Explorer below. The image
processing pipeline has four phases:

1.1.1 Filter
This is implemented as five calls to the OpenCV li-
brary. We begin with a 24-bit RGB image, presum-
ably generated by the AFM apparatus image capture
software. (See Supplementary Figure 1a.) We first con-
vert it into an 8-bit grayscale image (cvCvtColor),
and then perform intensity level histogram equalization
(cvEqualizeHist), to increase the local contrast in the
image. We next smooth the image by setting the intensity
level of a given pixel to the median intensity level of a
5 × 5 pixel window about it (cvSmooth). To create a
binary image from the smoothed grayscale one, we first
suppress pixels that have an intensity level below an
empirically derived static threshold (cvThreshold). In
a second pass, we adaptively promote to the maximum

1. http://www.wxwidgets.org/
2. http://opencvlibrary.sourceforge.net/

intensity level a given pixel if it is brighter than the
mean intensity level of a 31 × 31 pixel window about
it, and suppress it otherwise (cvAdaptiveThreshold).
(See Supplementary Figure 1b.) To minimize the number
of short, noisy fragments (those < 50 nm), we tried many
combinations of pixel window dimensions for smooth-
ing and thresholding, eventually choosing the ones given
above, which resulted in the best test images. In our
current implementation, we found that a 5 × 5 kernel
(for smoothing) and a 31 × 31 kernel (for thresholding)
works well with the images of 0.97 nm

pixel resolution that
we use uniformly throughout this study; other kernel
sizes might be more appropriate for different resolutions.

1.1.2 Erode
To obtain a one-dimensional representation of the molec-
ular backbone contours, we employ the erosion algo-
rithm given in [7], [2], that applies a set of eight 3×3 pixel
kernels as structuring elements to iteratively erode the
binary regions of 8-connected pixels, halting when there
is no change in the images of present and prior iterations.
This process results in a set of 8-connected component
edge pixels having unit thickness. (See Supplementary
Figure 1c.)

1.1.3 Select
The image is now a collection of 8-connected compo-
nent edge pixels. We recursively traverse each compo-
nent, labeling distinct branches, scoring them accord-
ing to Euclidean distance from one pixel to the next:
{N,S,E,W} = 1, {NW,NE,SW,SE} =

√
2. This traver-

sal results in a collection of weighted edge tree graphs.
Finally, we identify the longest path through each edge
tree graph, amounting to pruning branches from the
trunk. The longest path represents the molecular back-
bone contour. Our algorithm is two consecutive breadth-
first traversals across the 8-connected pixel graph. First,
initiated from any extremity (deg = 1) pixel, e1, a set
of end-to-end pixel paths (with their associated com-
puted lengths), Pe1 , is constructed through a breadth-
first traversal, branching at pixels having more than
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one unseen neighbor. Second, taking the terminal pixel,
e2, of the longest path from Pe1 , another breadth-first
traversal is initiated from e2, constructing its respective
set of end-to-end pixel paths, Pe2 , in the same fashion.
Upon completion, the longest path in Pe1 ∪ Pe2 is the
longest path in the whole 8-connected pixel graph. (See
Supplementary Figure 1d.)

1.1.4 Remove
Backbones that stray within 30 pixels from the image
boundary are removed, since these represent molecules
at the edge of the viewing area that will likely introduce
truncated fragments.

1.2 AFM Explorer length estimation pipeline
AFM Explorer uses the length estimation pipeline, whose
steps we outline the steps below.

1.2.1 Initial estimation using straight line segments
Let B be the set of all backbone pixel vectors in the
image. After image processing, we compute the initial
estimate of contour length for each ~b ∈ B as the sum of
its consecutive pixel-midpoint-to-pixel-midpoint straight
line segments, LLS(~b), where horizontal and vertical
segments have unit length, and diagonal segments have
length

√
2. We then admit a subset B′ ⊂ B of backbone

pixel vectors, where each ~b′ ∈ B′ meets two criteria: (1)
its length is between min and max, set to some mode-
dependent values, described below; and (2) it does not
intersect with another backbone, according to a simple
length heuristic.

1.2.2 Secondary estimation using fitted cubic splines
Then, for each ~b′ ∈ B′, we compute a sequence of cubic
splines fitted to each consecutive 5-pixel subsequence,
where the last pixel of a given subsequence is the first
pixel of the next (i.e. all subsequences share one extrem-
ity pixel). A tailing subsequence, ~b′t, having p < 5 pixels
is handled by fitting a cubic spline to the subsequence
formed by prepending to ~b′t the prior 5 − p pixels, then
counting the spline’s length from its closest approach
to the first and last pixels in ~b′t. The resulting summed
length of the cubic splines gives the second estimate of
contour length, LCS . Our cubic spline fitting method
seems to us a natural instance of the n-point moving
polynomial fitting method given in Rivetti, at al. [11].

The pipeline has four phases: train, weight, shrink,
and apply.

1.2.3 Train
When the application runs in train mode, each admissi-
ble backbone pixel vector,~b′ ∈ B′, its cubic spline contour
length estimate, LCS(~b′), and its computed feature values
(described below) form the data of a possibly overde-
termined linear system. We assume the images used to
train represent a polydisperse set of molecules having

known theoretical length L. Accordingly, the values of
min and max should reflect reasonable expectations for
a spread of LLS(~b′) values observed for these molecules.
For example, in one of our experiments, we trained
on images of polydisperse cDNAs having theoretical
lengths in {74.9, 139.6, 223.0, 351.8, 453.1, 583.8} nm.

We considered six features for our modeling of the
systematic error. All features were computed after im-
age processing, using the binary image, resulting from
thresholding, where molecular backbone objects are
white pixels ({R, G, B} = {255, 255, 255}) on a black
({R, G, B} = {0, 0, 0}) background. The coefficient of
variation for height (feature number 5 below) also uses
the corresponding pixels in the 8-bit grayscale image,
resulting from smoothing, to obtain the intensity values
that represent height. Given ~b′ ∈ B′:

1) the number of horizontal pixel pairs, nhorz in ~b′

2) the number of vertical pixel pairs, nvert in ~b′

3) the number of diagonal pixel pairs, ndiag in ~b′

4) the number of pixel triples arranged as perpendicu-
lars (i.e., the four orientations of the L shape), nperp
in ~b′

5) the coefficient of variation for height (nhtcv = nhtsd

nhtav

of ~b′) is the standard deviation of height divided
by the average height, where these are measured
as follows: the backbone (1-D) is contained within
the binary blob (2-D) that represents the molecule;
for each pixel in the backbone (the center), measure
its intensity value; upon completing this for all
pixels in the backbone, take the arithmetic mean
and standard deviation of the measurements.

6) the coefficient of variation for thickness (ntkcv =
ntksd

ntkav
of ~b′) is the standard deviation of thickness

divided by the average thickness, where these are
measured as follows: the backbone (1-D) is con-
tained within the binary blob (2-D) that represents
the molecule; for each pixel in the backbone (the
center), extend rays outward in the eight cardinal
directions until you reach the boundary of the
blob; now consider the sums of the lengths of
the four pairs of opposite cardinal direction rays;
take the minimum of these four measurements and
assign it to the center pixel; upon completing this
for all pixels in the backbone, take the arithmetic
mean and standard deviation of the measurements
assigned to each pixel.

Features 1-3 seem to us natural choices for estimating
Euclidean distance, as does Feature 4, especially in light
of the discussion of the corner chain estimator in Riv-
etti, at al. [11]. Features 5 and 6 are our estimators of
molecular height and thickness, as measured along the
extracted backbone; we believe it captures information
related to the degree of molecular adsorption onto the
mica substrate, and the degree of molecular curvature; it
could, in principle, be used to detect overlapping frag-
ments and the binding of markers to the molecule: non-
overlapping and unbound fragments would, in princi-
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ple, have markedly lower average height and thickness.
We train a linear regression model on q ≥ 6 cal-

ibrating molecule backbones, ~b′ ∈ B′, having known
theoretical length L, using values from these 6 features:
{nhorz, nvert, ndiag, nperp, nhtcv, ntkcv}, giving N~a = ~l,
where N is the q×6 feature matrix, ~a is the correction co-
efficient 6-vector to solve for, and ~l is the length estimate
error q-vector [..., (L−LCS(~b′i)), ...], where i = 1, ..., q. The
model has the analytic solution ~a = (NTN)−1NT~l. This
gives a trained estimator, L′T , as computed using the q
training molecules in the Apply phase below.

This formulation of L′T assumes all fragments, i.e.
their associated feature values, have equal weight, owing
to their equivalent validity as observations. However,
such an assumption may be challenged on the grounds
that upon taking into consideration the difference be-
tween the empirically measured null distribution and the
actual shape of the distribution in LCS measurements,
certain observations appear to be false positives, and
others false negatives — a notion formally addressed
by robust regression, namely, the Beaton-Tukey formu-
lation.

1.2.4 Weight
Normally, false positive examples appear as ones that
deviate significantly from the null-distribution, and if
not discarded, can affect the statistical estimators ad-
versely. However, instead of discarding such outliers
using sharp-thresholds, and using the filtered examples
in the estimator, one may assign to each data point a pos-
itive weight that signifies how likely it is that a particular
example is an outlier. Such a weighting scheme could be
based on the ideas underlying robust M-estimators — a
class of central tendency measures that make them resis-
tant to local misbehavior caused by outliers (e.g., false
positives). We adapted the Beaton-Tukey biweight [1] —
an iteratively reweighted measure — for this purpose
of central tendency. We note that other schemes, such as
Huber’s M-estimator, could have been used with similar
performance. Both the biweight and the Huber weight
functions are available in standard statistical packages.
Here we use Matlab’s robustfit command with default
parameters (weight function “bisquare,” using a tuning
constant of 4.685).

M-estimator Θ uses these weights to compute the
weighted average of sample points: Θ =

∑
wi ·xi/

∑
wi,

0 ≤ wi ≤ 1; the weights are determined in terms a
parameter descriptor ui = (xi − Θ)/δ, as follows: δ =
MAD (median absolute deviation) and

wi =

{
[1− u2/4.685]2, if |u| ≤ 4.685;

0, otherwise.

In the context of our system, the xi, i = 1, ..., q are
the LCS of the q calibrating molecule backbones in
the training set. Each molecule is assigned a weight
corresponding to each known theoretical length in the
training set. For example, if the training set is comprised

of 1,000 molecules from 5 distinct species, then we
compute a 1, 000 × 5 weight matrix. Summing across
rows, if any of the rows has sum equal to zero, then the
corresponding molecule is discarded from the training
set. Of the q training molecules, q′ remain. This gives a
weighted trained estimator, L′W , as computed using the
q′ ≤ q training molecules in the Apply phase below.

In our modeling of estimation error above, one or
more features in training may introduce too much vari-
ance (systematic error) or dependence (model error). We
would like our model to have an extensible and adaptive
structure, where any number of features may be used,
and proceed with confidence, knowing that noisy or de-
pendent features will have a contribution to the estimate
that shrinks to zero. In shrink mode, the application
simply applies one of the following patterns of shrinkage
to the correction coefficients, ~a, without applying the
resulting backbone contour length estimator to test data
— the task of apply mode, described below.

1.2.5 Shrink
In 1961, James and Stein published their seminal paper
[8] describing a method to improve estimating a mul-
tivariate normal mean, ~µ = [µ1, ..., µk], under expected
sum of squares error loss, provided the degree of free-
dom k ≥ 3, and the µi are close to the point to which
the improved estimator shrinks.

Let ~a = [ai, ..., ak] have a k-variate normal distribution
with mean vector ~µ and covariance matrix σ2I , which
we measure empirically in train mode. We would like to
estimate ~µ using an estimator

δ(~a) = [δ1(~a), ..., δk(~a)] (1)

under the sum of squares error loss

L(~µ, δ) =

k∑
i=1

(µi − δi)2 (2)

In terms of expected loss,

R(~µ, δ) = Eµ[L(~µ, δ(~a))], (3)

James and Stein show that when k ≥ 3, an improved
estimator is obtained by a symmetric (or spherical)
shrinkage in ~a given by

δ(~a) =

1− κ(q − k)s2

q∑
i=1

(N~a)2i


+

~a, (4)

where

κ =
(k − 2)

(q − k + 2)
, (5)

and s2 is the empirical estimate of variance, σ2, given by

s2 =
1

(q − k)

q∑
i=1

(L − LCSi
− (N~a)i)

2. (6)
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and where [x]+ ≡ max{0, x}.
When extreme µi are likely, then spherical shrink-

age may give little improvement. This may occur, for
instance, when the µi arise from a prior distribution
with a long tail. A property of spherical shrinkage
is that its performance is guaranteed only in a small
subspace of parameter space, requiring that one select
an estimator designed with some notion of where ~µ is
likely to be, such that the estimator shrinks toward it. An
extreme µi will likely be outside of any small selected
subspace, implying a large denominator and so little, if
any, shrinkage in ~a, thereby giving no improvement. To
address this problem, Stein proposed a coordinate-based
(or truncated) shrinkage method, given by

δ
(f)
i (~a) =

1−
(f − 2)s2min{1, z(f)

|ai| }
q∑
j=1

(N ~m)2j


+

ai, (7)

where f is a “large fraction” of k, zi = |ai|, i = 1, ..., k,
z(1) < z(2) < ... < z(f) < ... < z(k) forms a strictly increas-
ing ordering on z1, ..., zk, s2 is the empirical estimate of
variance, σ2, given by

s2 =
1

(q − k)

q∑
i=1

(L − LCSi
− (N~a)i)

2, (8)

and ~mi = min{ai, z(f)}, i = 1, ..., k. Stein shows this esti-
mator is minimax if f ≥ 3. Observe that the denominator
is small even when (k − f) of the µi are extreme.

When we applied spherical and truncated James-Stein
shrinkage to our feature coefficients, it did little to reduce
the feature dimensionality (i.e., all shrinkage factors were
very close to 1). For a summary of these shrinkage
factors, see Supplementary Table 1. From this we inferred
our five features had little noise or dependence. Hence,
we were confident our linear regression model did not
overfit.

1.2.6 Apply
When the application is in apply mode, the model
correction coefficients are locked — they are unadjusted
from training — and are loaded from disk. Then each
~b′ ∈ B′ obtains its final estimate, L′ ∈ {L′T ,L′W }, from
the correction function, C(~b′) = a1nhorz(~b

′)+a2nvert(~b
′)+

a3ndiag(~b
′) +a4nperp(~b

′) +a5nhtcv(~b
′) +a6ntkcv(~b

′), and is
given by L′(~b′) = LCS(~b′) + C(~b′).

2 UNIQUE ASPECTS OF AFM
First, all the approaches under review, including ours,
make use of half of the AFM data available. For each
point (x, y) in the area under inspection, the AFM instru-
ment in tapping mode takes two measurements: the dis-
placement in the z-direction for height (the typical AFM
“image”), and the change in oscillation frequency for
softness and tip-surface adhesion. Second, none attempt to

model tip convolution effects directly and appropriately
deconvolve the image, though the problem is widely
acknowledged [9], [13], [6], [12], [15] and algorithms
designed precisely for this purpose exist [14]. Third,
none attempt to model thermal drift directly and per-
form the appropriate deblurring of the image (locally or
globally) though this problem too is widely acknowl-
edged [5], [16], [10], [17] and an assortment of well-
suited algorithms for this exist, namely Carasso’s SECB
algorithm [3], [4]. Fourth, experimenters can use closed-
loop scanning settings in their protocols, to reduce the
effects of mechanical drift by spending the majority of
scan time on just the objects of interest. These last three
are sources of systematic error that can, in principle,
be removed, and should obtain more accurate length
estimates. In addition, there are problems implicit to the
chemistry, namely, it is not well understood how a three-
dimensional DNA molecule adsorbs onto a substrate like
mica, and under what conditions uniform binding to the
surface occurs, let alone how to ensure this. We expect
better models will emerge that will eventually lead to
reduction in these kinds of experimental error.

3 SAMPLE PREPARATION AND IMAGING

All DNA samples are suspended in Tri buffer (pH 7.6)
with 10 mM MgCl2 to permit the molecules to stably
adsorb the mica substrate. Samples are deposited in a
volume of 100 uL on freshly-cleaved mica substrates
and allowed to incubate for 10 minutes without drying,
followed by gentle washing (3X) with purified water. The
substrates are then dried with a stream of dry nitrogen
and soft baked at 120C for 15 minutes to eliminate excess
adsorbed water. Samples are imaged in tapping mode in
air with the Dimension ICON AFM (Bruker Metrology)
using k = ∼ 3 N/m silicon nitride tips (Nanosensors).
Scan sizes were 3x3 microns, imaged at 2 Hz. Image
resolution was 2 nm/pixel.

4 SOFTWARE

Our image processing and length estimation software
is written in C++ and Matlab. We will make our
code available to interested parties via our website,
http://bioinformatics.nyu.edu/.
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(a) The original 24-bit RGB AFM image. (b) The image after thresholding.

(c) The image after iterative erosion. (d) The image after graph translation and backbone selection.

Fig. 1: Results of the AFM Explorer image processing pipeline.
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Fig. 2: Early comparative results. Monodisperse pUC19 plasmids were linearized with EcoRi and digested with RsaI restriction
enzymes. Fifty AFM images were taken of the resulting fragments, from which 245 fragments were selected and tagged.
The lengths given by AFM Explorer (version 0.20, producing piecewise line segment lengths, LLS) were compared against
those of hand-drawn backbones using NIH Image. Note that as length increased, automatically computed LLS progressively
underestimated fragment backbone length with respect to manual measurements. Note too the proximity of clustering to the
theoretically given cleavage points induced by RsaI at 75, 223, and 584 nm; the clustering around 900 nm suggested failed
digestion (an intrinsic experimental error). Note that these results were obtained using a prototype version of our software, and
so this figure presents preliminary data using LLS , before the other metrics (LCS ,L′T ,L′W ) were developed. Also note that the
set of images used to produce this figure were not available for processing by subsequent versions of our software.
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Fig. 3: Length histogram of LCS for Train.
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(a) Length histogram of LCS for Test A.
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(b) Length histogram of L′W for Test A.

Fig. 4: Estimation of the theoretical fragment lengths in Test A.
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(a) Length histogram of LCS for Test B.
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(b) Length histogram of L′W for Test B.

Fig. 5: Estimation of the theoretical fragment lengths in Test B.
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(a) Length histogram of LCS for Test C.
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(b) Length histogram of L′W for Test C.

Fig. 6: Estimation of the theoretical fragment lengths in Test C.
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Fig. 7: Measured (LCS and L′W ) versus theoretical lengths for the 15 distinct cDNA fragment lengths in Tests A, B, and C.

TABLE 1: Shrinkage factors and resulting feature correction coefficients for the Linear 6-feature model. There are six pairs of rows:
the first row in the pair gives the James-Stein shrinkage factors, and the second row gives the shrinkage factors multiplied
by their respective correction coefficients. The first row pair reports the unshrunken correction coefficients, and is given for
comparison. Each remaining row pair denotes the result of a shrinkage trial: spherical shrinkage, then four truncated shrinkages
(where f is taken from its maximum value, 6, down to its minimum value, 3, as specified by the definition given by James and
Stein). The ith column corresponds to the ith correction coefficient.

i 1 2 3 4 5 6

train 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
ai -0.13336 -0.0010019 -0.045653 -0.86465 -679.23 38.955

spherical 0.98661 0.98661 0.98661 0.98661 0.98661 0.98661
δi(~a) -0.13158 -0.0009885 -0.045042 -0.85308 -670.14 38.433

truncated (f = 6) 0.98660 0.98660 0.98660 0.98660 0.98660 0.98660
δ
(6)
i (~a) -0.13158 -0.00098849 -0.045041 -0.85306 -670.13 38.433

truncated (f = 5) 0.98995 0.98995 0.98995 0.98995 0.99942 0.98995
δ
(5)
i (~a) -0.13202 -0.00099184 -0.045194 -0.85596 -678.84 38.563

truncated (f = 4) 0.99870 0.99870 0.99870 0.99870 1.00000 0.99997
δ
(4)
i (~a) -0.13319 -0.0010006 -0.045594 -0.86353 -679.23 38.954

truncated (f = 3) 0.99937 0.99937 0.99937 0.99990 1.00000 1.00000
δ
(3)
i (~a) -0.13328 -0.0010013 -0.045624 -0.86457 -679.23 38.955
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Fig. 8: Errors of measured (LCS and L′W ) lengths for the 15 distinct cDNA fragment lengths in Tests A, B, and C, expressed as a
percentage of their respective theoretical fragment lengths.
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Fig. 9: Errors of measured lengths for distinct cDNA fragment lengths across cited studies, expressed as a percentage of their
respective theoretical fragment lengths.
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TABLE 2: Automated DNA sizing accuracy claims. Columns give the authors of the studies, the theoretical DNA fragment
lengths under investigation (τ ) in nanometers, the errors in nanometers of their best estimator (L) obtained in their respective
experiments, the theoretical DNA fragment lengths under investigation (τ ) in base pairs, and the errors in base pairs of their
best estimator (L) obtained in their respective experiments. Errors are calculated as |τ − L|). Errors measured in percentage of
corresponding theoretical fragment length are calculated as |τ−L|

τ
· 100. All calculations assume 0.33 nm = 1 bp. Results from

the “Error (%)” column are plotted in Supplementary Figure 9.

Author (year) Fragment Length (nm) Error (nm) Fragment Length (bp) Error (bp) Error (%)

Fang, et al (1998) 30.00 3.00 90.91 9.09 10.00
60.00 1.00 181.82 3.03 1.67
60.00 6.00 181.82 18.18 10.00
75.00 3.00 227.27 9.09 4.00
90.00 6.00 272.73 18.18 6.67
90.00 7.00 272.73 21.21 7.78

120.00 10.00 363.64 30.30 8.33
150.00 8.00 454.55 24.24 5.33
180.00 7.00 545.45 21.21 3.89
210.00 12.00 636.36 36.36 5.71
240.00 22.00 727.27 66.67 9.17
300.00 20.00 909.09 60.61 6.67
300.00 32.00 909.09 96.97 10.67
450.00 32.00 1363.64 96.97 7.11
600.00 57.00 1818.18 172.73 9.50
750.00 38.00 2272.73 115.15 5.07

Sanchez-Sevilla, et al (2002) 206.00 3.00 624.24 9.09 1.46
355.00 2.00 1075.76 6.06 0.56

Ficarra, et al (2005) 633.40 2.10 1919.39 6.36 0.33
633.40 2.00 1919.39 6.06 0.31

1098.00 13.00 3327.27 39.39 1.18

Sundstrom, et al (2012) 66.00 1.69 200.00 5.12 2.56
99.00 2.19 300.00 6.64 2.21

132.00 3.09 400.00 9.36 2.34
135.30 3.49 410.00 10.58 2.58
167.80 3.79 508.48 11.48 2.26
231.00 7.49 700.00 22.70 3.24
258.70 3.99 783.94 12.09 1.54
264.00 7.19 800.00 21.79 2.72
265.00 0.75 803.03 2.27 0.28
297.00 2.79 900.00 8.45 0.94
299.00 2.65 906.06 8.03 0.89
330.00 3.29 1000.00 9.97 1.00
475.60 5.65 1441.21 17.12 1.19
492.40 1.39 1492.12 4.21 0.28
588.10 2.55 1782.12 7.73 0.43


